The compelled axisymmetric bending fluctuations of thick round rigid plate
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2011), pp. 142-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The new closed solution of axially symmetric nonstationary problem of the theory of elasticity for thick round anisotropic plate with rigid of its external radial surface is constructed. Calculated relations are obtained by method of expansion in eigen vector-functions in the form of structural algorithm of finite transformations. Numerical results allow to define the natural-vibration frequency, and also the stress-strain state of the testing element.
Keywords: compelled fluctuations, axisymmetric dynamic stress, thick anisotropic plate.
@article{VSGU_2011_8_a15,
     author = {D. A. Shlyakhin},
     title = {The compelled axisymmetric bending fluctuations of thick round rigid plate},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {142--152},
     year = {2011},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_8_a15/}
}
TY  - JOUR
AU  - D. A. Shlyakhin
TI  - The compelled axisymmetric bending fluctuations of thick round rigid plate
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2011
SP  - 142
EP  - 152
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/VSGU_2011_8_a15/
LA  - ru
ID  - VSGU_2011_8_a15
ER  - 
%0 Journal Article
%A D. A. Shlyakhin
%T The compelled axisymmetric bending fluctuations of thick round rigid plate
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2011
%P 142-152
%N 8
%U http://geodesic.mathdoc.fr/item/VSGU_2011_8_a15/
%G ru
%F VSGU_2011_8_a15
D. A. Shlyakhin. The compelled axisymmetric bending fluctuations of thick round rigid plate. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2011), pp. 142-152. http://geodesic.mathdoc.fr/item/VSGU_2011_8_a15/

[1] A. N. Guz(red.), Prostranstvennye zadachi teorii uprugosti i plastichnosti, v. 5, Nauk. dumka, Kiev, 1986, 286 pp. | Zbl

[2] Fridman L. I., “Dinamicheskaya zadacha teorii uprugosti dlya tsilindra konechnykh razmerov”, Prikladnaya mekhanika, 17:3 (1981), 37–43 | Zbl

[3] M. S. Yakimenko i dr., “Vysokochastotnye kolebaniya tsilindra konechnykh razmerov”, Doklady NAN Ukrainy, 2009, no. 5, 83–86

[4] Makaryan V. S., Simonyan V. V., “Ob odnoi dinamicheskoi zadache dlya krugovogo uprugogo tsilindra konechnoi dliny”, Mechanics. Proceedings of National Academy of Sciences of Armenia, 2009, no. 51(1), 26–31

[5] Senitskii Yu. E., “K resheniyu osesimmetrichnoi zadachi dinamiki dlya anizotropnogo korotkogo tolstostennogo tsilindra”, Prikladnaya mekhanika, 17:8 (1981), 95–100

[6] Senitskii Yu. E., “Dinamicheskaya zadacha teorii uprugosti dlya anizotropnogo konechnogo tolstostennogo tsilindra s uchetom sil vyazkogo soprotivleniya”, Vestnik SamGU. Estestvennonauchn. ser., 2008, no. 2(61), 248–263

[7] Senitskii Yu. E., Issledovanie uprugogo deformirovaniya elementov konstruktsii pri dinamicheskikh vozdeistviyakh metodom konechnykh integralnykh preobrazovanii, Izd-vo Saratovskogo un-ta, Saratov, 1985, 173 pp.

[8] Vaisfeld N. D., “Opredelenie volnovogo polya vnutri pologo uprugogo tsilindra pod deistviem osesimmetrichnoi nestatsionarnoi nagruzki”, Akustichnii visnik, 6:3 (2003), 18–25

[9] M. A. Baranov i dr., “Atomno-diskretnoe opisanie vliyaniya anizotropnykh vzaimodeistvii na uprugie svoistva GPU metallov”, Fizika tverdogo tela, 46:2 (2004), 212–217

[10] Sneddon I. N., Berri D. S., Klassicheskaya teoriya uprugosti, Nauka, M., 1961, 219 pp. | MR

[11] A. N. Guz(red.), Prostranstvennye zadachi teorii uprugosti i plastichnosti, v. 3, Nauk. dumka, Kiev, 1985, 280 pp.

[12] Shlyakhin D. A., “Osesimmetrichnaya zadacha teorii uprugosti dlya krugloi zhestko zakreplennoi plastiny”, Izvestiya vuzov. Ser.: Stroitelstvo, 2011, no. 7, 3–9