A rectangular plate on a two-parameter elastic base: the analytical solution
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2011), pp. 128-133
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper the approximate solution for a problem of a rectangular plate on a two-parameter elastic base is suggested. The double series of beam functions satisfying elastic support boundary conditions are constructed. The analytical expressions for series function coefficients are obtained.
Keywords:
rectangular plate, approximate analytical solution, two-parameter elastic base, elastic support, beam functions, double series of functions.
@article{VSGU_2011_8_a13,
author = {A. A. Bol'shakov},
title = {A rectangular plate on a~two-parameter elastic base: the analytical solution},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {128--133},
year = {2011},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2011_8_a13/}
}
A. A. Bol'shakov. A rectangular plate on a two-parameter elastic base: the analytical solution. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2011), pp. 128-133. http://geodesic.mathdoc.fr/item/VSGU_2011_8_a13/
[1] Pasternak P. L., Osnovy novogo metoda rascheta fundamentov na uprugom osnovanii pri pomoschi dvukh koeffitsientov posteli, Gosstroiizdat, M., 1954, 56 pp.
[2] Kolkunov N. V., Osnovy rascheta uprugikh obolochek, Vyssh. shkola, M., 1972, 296 pp. | Zbl
[3] Biderman V. L., Prikladnaya teoriya mekhanicheskikh kolebanii, Vyssh. shkola, M., 1972, 416 pp. | Zbl
[4] Fletcher K., Chislennye metody na osnove metoda Galerkina, Mir, M., 1988, 296 pp.
[5] Lantsosh K., Prakticheskie metody prikladnogo analiza, Fizmatgiz, M., 1961, 524 pp.