Simulation of transport phenomena of fullerenes in the fluid by method of molecular dynamics
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 93-103
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the frameworks of classical molecular dynamics method the coefficients of diffusion and viscosity of fullerenes in fluid (benzol) depending on the temperature of nanosuspension have been calculated.The effective potential of fullerene-molecule interaction used in calculations is obtained under the assumption of additivity of fullerene and fluid molecules interaction, where fullerene is considered as a solid particle.
Keywords: molecular dynamics, fullerene-in-benzol nanosuspensions, viscosity coefficient.
Mots-clés : diffusion coefficient
@article{VSGU_2011_5_a9,
     author = {E. D. Gaiduk and V. A. Saleev},
     title = {Simulation of transport phenomena of fullerenes in the fluid by method of molecular dynamics},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {93--103},
     year = {2011},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_5_a9/}
}
TY  - JOUR
AU  - E. D. Gaiduk
AU  - V. A. Saleev
TI  - Simulation of transport phenomena of fullerenes in the fluid by method of molecular dynamics
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2011
SP  - 93
EP  - 103
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VSGU_2011_5_a9/
LA  - ru
ID  - VSGU_2011_5_a9
ER  - 
%0 Journal Article
%A E. D. Gaiduk
%A V. A. Saleev
%T Simulation of transport phenomena of fullerenes in the fluid by method of molecular dynamics
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2011
%P 93-103
%N 5
%U http://geodesic.mathdoc.fr/item/VSGU_2011_5_a9/
%G ru
%F VSGU_2011_5_a9
E. D. Gaiduk; V. A. Saleev. Simulation of transport phenomena of fullerenes in the fluid by method of molecular dynamics. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 93-103. http://geodesic.mathdoc.fr/item/VSGU_2011_5_a9/

[1] Bezmelnitsyn V. N., Eletskii A. V., Okun M. V., “Fullereny v rastvorakh”, UFN, 168:11 (1998), 1195–1220 | DOI

[2] Kheerman D. V., Metody kompyuternogo eksperimenta v teoreticheskoi fizike, Nauka, M., 1990, 176 pp.

[3] Zaliznyak V. E., Osnovy vychislitelnoi fizike. Ch. 2. Vvedenie v metody chastits, NITs “Regulyarnaya i khaoticheskaya dinamika”, Institut kompyuternykh issledovanii, M.–Izhevsk, 2006, 156 pp.

[4] Rudyak V. Ya., Dubtsov S. N., Baklanov A. M., “O zavisimosti koeffitsienta diffuzii nanochastits ot temperatury”, Pisma v ZhTF, 34:12 (2008), 48–54

[5] J. C. Van der Werff et al., “Interpretation of the complex viscosity of dense hard–sphere dispersions”, Phys. Rev. A, 39 (1989), 795 | DOI

[6] Kwak K., Kim C., “Viscosity and themal conductivity of copper oxide nanofluid dispersed in ethylene glycol”, Korea-Australia Rheology J., 17:2 (2005), 35–40

[7] Wang X., Xu X., Choi S. U. S., “Thermal conductivity of nanoparticle – fluid mixture”, J. Themophys. Heat Transfer, 13:4 (1999), 474–480 | DOI

[8] Rudyak V. Ya., Krasnolutskii S. L., “O vyazkosti razrezhennykh gazovzvesei s nanochastitsami”, DAN, 392:4 (2003), 435

[9] Rudyak V. Ya., Statisticheskaya mekhanika geterogennykh sred. Ch. I. Kineticheskaya teoriya, NGASU, Novosibirsk, 2004, 316 pp.

[10] Erkoc S., “Empirical many-body potential energy function used in computer simulation of condensed matter properties”, Physics Reports, 278:2 (1997), 80–105 | DOI

[11] Gudman F., Vakhman G., Dinamika rasseyaniya gaza poverkhnostyu, Mir, M., 1980, 423 pp.

[12] Rudyak V. Ya., Krasnolutskii S. L., “Diffuziya nanochastits v razrezhennom gaze”, ZhTF, 72:7 (2002), 13–20

[13] Barantsev R. G., Vzaimodeistvie razryazhennykh gazov s obtekaemymi poverkhnostyami, Nauka, M., 1975, 343 pp. | MR

[14] Rahman A., “Correlations in the motion of atoms in liquid argon”, Phis. Rev., 136 (1964), A405 | DOI

[15] Lagunov V. A., Sinani A. B., “Obrazovanie bistruktury tverdogo tela v kompyuternom eksperimente”, Fizika tverdogo tela, 40:10 (1998), 1919–1924

[16] Guld Kh., Tobochnik Ya., Kompyuternoe modelirovanie v fizike, 1, Mir, M., 1990, 352 pp.

[17] Guld Kh., Tobochnik Ya., Kompyuternoe modelirovanie v fizike, 2, Mir, M., 1990, 400 pp.

[18] Krivtsov A. M., Krivtsova N. V., “Metod chastits i ego ispolzovanie v mekhanike deformiruemogo tverdogo tela”, Dalnevostochnyi matematicheskii zhurnal DVO RAN, 3:2 (2002), 254–276

[19] Zamalin V. N., Norman G. E., Filinov V. S., Metod Monte-Karlo v statisticheskoi termodinamike, Nauka, M., 1977, 229 pp. | MR

[20] Frenkel D., Smit B., Understanding molecular simulation, New York, 2002, 638 pp.

[21] Alder B. J., Wainwright T. E., “Studies in molecular dynamics. VIII: The transport coefficients for hard–sphere fluid”, J. Chem. Phys., 53:10 (1970), 3813 | DOI

[22] Rudyak V. Ya., Krasnolutskii S. L., Statisticheskaya mekhanika geterogennykh sred. Ch. IV. Potentsialy mezhchastichnogo vzaimodeistviya, Preprint NGASU No 3(13)–98, Novosibirsk, 1998, 35 pp.

[23] Baron P. A., Willeke K., Aerosol Measurement: Principles, Techniques and Applications, John Wiley and Sons, Inc., New York, 2001

[24] Rudyak V. Ya., Belkin A. A., Tomilina E. A., “Sila, deistvuyuschaya na nanochastitsu v zhidkosti”, Pisma v ZhTF, 34:2 (2008), 69–74 | MR

[25] Rudyak V. Ya., Belkin A. A., Egorov V. V., “Ob effektivnoi vyazkosti”, ZhTF, 79:8 (2009), 18–25

[26] Rid R., Prausnits Dzh., Shervud T., Svoistva gazov i zhidkostei, spravochnoe posobie, Khimiya, L., 1982, 592 pp.

[27] Magomedov M. N., “O svoistvakh GTsK-fulleritov”, Fizika tverdogo tela, 47:4 (2005), 758–766