@article{VSGU_2011_5_a8,
author = {V. A. Sobolev and D. M. Shchepakin},
title = {Integral manifolds and the reduction principle},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {81--92},
year = {2011},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2011_5_a8/}
}
V. A. Sobolev; D. M. Shchepakin. Integral manifolds and the reduction principle. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 81-92. http://geodesic.mathdoc.fr/item/VSGU_2011_5_a8/
[1] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M.–L., 1950, 472 pp. | Zbl
[2] Pliss V. A., Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1977, 304 pp. | MR | Zbl
[3] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988, 256 pp. | MR | Zbl
[4] Sobolev V. A., “Integral manifolds and decomposition of nonlinear differentional systems”, Studia Scientiarum Mathematicarum Hungarica, 1988, no. 23, 73–79 | MR | Zbl
[5] Voropaeva N. V., Sobolev V. A., Geometricheskaya dekompozitsiya singulyarno vozmuschennykh sistem, Fizmatlit, M., 2009, 256 pp. | Zbl
[6] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 530 pp. | MR | Zbl
[7] Michael Malisoff, Frédéric Mazenc, Constructions of Strict Lyapunov Functions, Springer–Verlag, London, 2009, 386 pp. | MR