On several varieties of Leibniz algebras
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 71-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to two new results concerning varieties of Leibniz algebras. In case of prime characteristic $p$ we construct an example of a non-nilpotent variety of Leibniz algebras with Engel condition. In case of field of characteristic zero we obtain a new result concerning the space of multilinear components of the variety of left-nilpotent Leibniz algebra of class three.
Keywords: Leibniz algebra, Engel condition, variety of algebras, Young diagram.
@article{VSGU_2011_5_a7,
     author = {T. V. Skoraya and Yu. Yu. Frolova},
     title = {On several varieties of {Leibniz} algebras},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {71--80},
     year = {2011},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_5_a7/}
}
TY  - JOUR
AU  - T. V. Skoraya
AU  - Yu. Yu. Frolova
TI  - On several varieties of Leibniz algebras
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2011
SP  - 71
EP  - 80
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VSGU_2011_5_a7/
LA  - ru
ID  - VSGU_2011_5_a7
ER  - 
%0 Journal Article
%A T. V. Skoraya
%A Yu. Yu. Frolova
%T On several varieties of Leibniz algebras
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2011
%P 71-80
%N 5
%U http://geodesic.mathdoc.fr/item/VSGU_2011_5_a7/
%G ru
%F VSGU_2011_5_a7
T. V. Skoraya; Yu. Yu. Frolova. On several varieties of Leibniz algebras. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 71-80. http://geodesic.mathdoc.fr/item/VSGU_2011_5_a7/

[1] Blokh A. M., “Ob odnom obobschenii ponyatiya algebry Li”, Doklady Akademii nauk SSSR, 18:3 (1965), 471–473

[2] Maltsev A. I., “Ob algebrakh s tozhdestvennymi opredelyayuschimi sootnosheniyami”, Matem. sb., 26:1 (1950), 19–33

[3] Zelmanov E. I., “Ob engelevykh algebrakh Li”, DAN SSSR, 292:2 (1987), 265–268 | MR

[4] Frolova Yu. Yu., “O nilpotentnosti engelevoi algebry Leibnitsa”, Vestnik Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 2011, no. 3, 63–65 | MR

[5] Cohn P. M., “A non-nilpotent Lie ring satisfying the Engel condition and a non-nilpotent Engel group”, Proc. Cambridge Phil. Soc.: Math. and Phys. Sci., 51:3 (1955), 401–405 | DOI | MR | Zbl

[6] Abanina L. E., Mischenko S. P., “Nekotorye mnogoobraziya algebr Leibnitsa”, Matematicheskie metody i prilozheniya, Trudy devyatykh matematicheskikh chtenii MGSU, Soyuz, M., 2002, 95–99

[7] Abanina L. E., Struktura i tozhdestva nekotorykh mnogoobrazii algebr Leibnitsa, dis. $\dots$ kand. fiz.-mat. nauk, UlGU, Ulyanovsk, 2003, 65 pp.

[8] Volichenko I. B., “O mnogoobrazii algebr Li $AN_2$ nad polem kharakteristiki nul”, DAN BSSR, 25:12 (1981), 1063–1066 | MR | Zbl

[9] Volichenko I. B., “Mnogoobraziya algebr Li s tozhdestvom $[[x_1x_2x_3],[x_4x_5x_6]]\equiv 0$ nad polem kharakteristiki nul”, Sib. matem. zhurn., 25:3 (1984), 40–54 | MR | Zbl

[10] Dzhambruno A., Zaitsev M. V., Mischenko S. P., “Kratnosti kharakterov polilineinoi chasti mnogoobraziya $AN_2$”, Uchenye zapiski Ulyanovskogo gosudarstvennogo universiteta. Fundamentalnye problemy matematiki i mekhaniki, 1998, no. 1(5), 59–62

[11] Zaitsev M. V., Mischenko S. P., “Novoe ekstremalnoe svoistvo mnogoobraziya algebr Li $AN_2$”, Vestnik MGU. Cer. 1, 1999, no. 5, 18–23

[12] Giambruno A., Mishchenko S., Zaicev M., “On the colength of a variety of Lie algebras”, International Journal of Algebra and Computation, 9:5 (1999), 483–491 | DOI | MR | Zbl

[13] Giambruno A., Zaicev M. V., “Polynomial Identities and Asymptotic Methods”, Mathematical Surveys and Monographs, 122, American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[14] Mischenko S. P., Zaitsev M. V., “O kodline mnogoobrazii lineinykh algebr”, Matematicheskie zametki, 79:4 (2006), 553–559 | DOI | MR