Representation of Parseval frames in Hilbert spaces
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 60-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we introduce two new classes of Parseval frames in arbitrary Hilbert spaces of finite or infinite dimension: simple and composite Parseval frames. Theorems of representation of composite Parseval frames by summation of simple ones are proved. Few classes of simple frames are described: orthonormal basis, equiangular Parseval frames and some other examples.
Keywords: Parseval frames, frame equivalence, frame representations, equiangular frames.
@article{VSGU_2011_5_a6,
     author = {I. S. Ryabtsov},
     title = {Representation of {Parseval} frames in {Hilbert} spaces},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {60--70},
     year = {2011},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_5_a6/}
}
TY  - JOUR
AU  - I. S. Ryabtsov
TI  - Representation of Parseval frames in Hilbert spaces
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2011
SP  - 60
EP  - 70
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VSGU_2011_5_a6/
LA  - ru
ID  - VSGU_2011_5_a6
ER  - 
%0 Journal Article
%A I. S. Ryabtsov
%T Representation of Parseval frames in Hilbert spaces
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2011
%P 60-70
%N 5
%U http://geodesic.mathdoc.fr/item/VSGU_2011_5_a6/
%G ru
%F VSGU_2011_5_a6
I. S. Ryabtsov. Representation of Parseval frames in Hilbert spaces. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 60-70. http://geodesic.mathdoc.fr/item/VSGU_2011_5_a6/

[1] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2002 | MR

[2] Casazza P. G., Tremain J. C., A brief introduction to Hilbert space frame theory and its applications, MO 65211-4100. URL: , Department of Mathematics, University of Missouri, Columbia http://www.http/framerc.org

[3] Istomina M. N., Pevnyi A. B., “O raspolozhenii tochek na sfere i freime Mersedes-Bents”, Matematicheskoe prosveschenie. Ser. 3, 2007, no. 11

[4] Novikov S. Ya., Ryabtsov I. S., “Optimization of Frame Representations for Compressed Sensing and Mercedes-Benz Frame”, Izbrannye voprosy matematicheskoi fiziki i $p$-adicheskogo analiza, cb. st., Tr. MIAN, 265, 2009, 211–219 | MR | Zbl

[5] Casazza P. G., Redmond D., Tremain J. C., “Real Equiangular Frames”, CISS Meeting Information Sciences and Systems, Princeton, NJ, 2008

[6] Lemmens P. W. H., Seidel J. J., “Equiangular lines”, J. Algebra, 1973, no. 24, 494–512 | DOI | MR | Zbl

[7] M. Sustik et al., “On the existence of equiangular tight frames”, Linear Algebra Appl., 2007, no. 426(2–3), 619–635 | DOI | MR | Zbl