@article{VSGU_2011_5_a6,
author = {I. S. Ryabtsov},
title = {Representation of {Parseval} frames in {Hilbert} spaces},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {60--70},
year = {2011},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2011_5_a6/}
}
I. S. Ryabtsov. Representation of Parseval frames in Hilbert spaces. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 60-70. http://geodesic.mathdoc.fr/item/VSGU_2011_5_a6/
[1] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2002 | MR
[2] Casazza P. G., Tremain J. C., A brief introduction to Hilbert space frame theory and its applications, MO 65211-4100. URL: , Department of Mathematics, University of Missouri, Columbia http://www.http/framerc.org
[3] Istomina M. N., Pevnyi A. B., “O raspolozhenii tochek na sfere i freime Mersedes-Bents”, Matematicheskoe prosveschenie. Ser. 3, 2007, no. 11
[4] Novikov S. Ya., Ryabtsov I. S., “Optimization of Frame Representations for Compressed Sensing and Mercedes-Benz Frame”, Izbrannye voprosy matematicheskoi fiziki i $p$-adicheskogo analiza, cb. st., Tr. MIAN, 265, 2009, 211–219 | MR | Zbl
[5] Casazza P. G., Redmond D., Tremain J. C., “Real Equiangular Frames”, CISS Meeting Information Sciences and Systems, Princeton, NJ, 2008
[6] Lemmens P. W. H., Seidel J. J., “Equiangular lines”, J. Algebra, 1973, no. 24, 494–512 | DOI | MR | Zbl
[7] M. Sustik et al., “On the existence of equiangular tight frames”, Linear Algebra Appl., 2007, no. 426(2–3), 619–635 | DOI | MR | Zbl