On one approximation estimate
    
    
  
  
  
      
      
      
        
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 53-59
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Linear operators satisfying some conditions are considered. The given operators are a particular kind of class $S_{2m}$ operators (by P. P. Korovkin). The estimate of the value $\left|L_n(f,x)-f(x)\right|$ for the $f \in W^2H^\alpha_M$ is received, $L_n$ belongs to the class $S_6$. For the estimate derivation the interpolation method is used, described in the works by Yu. G. Abakumov and O. N. Shestakova.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
linear operators, approximation estimate, interpolation method.
                    
                  
                
                
                @article{VSGU_2011_5_a5,
     author = {M. B. Medegei},
     title = {On one approximation estimate},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {53--59},
     publisher = {mathdoc},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_5_a5/}
}
                      
                      
                    M. B. Medegei. On one approximation estimate. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 53-59. http://geodesic.mathdoc.fr/item/VSGU_2011_5_a5/
