About the method of traces of resolvents calculated precisely
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 37-52
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article it is ascertained that there are some methods of calculation of eigenvalues of ordinary boundary problems for the equations of mathematical physics. If the positive degree of a resolvent is the kernel operator this can take advantage at calculation of a spectrum of a boundary problem. It is mentioned that similar results are reached by A. A. Dorodnitsyn.
Keywords: spectrum, discrete operator, Hilbert space.
@article{VSGU_2011_5_a4,
     author = {E. M. Maleko},
     title = {About the method of traces of resolvents calculated precisely},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {37--52},
     year = {2011},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_5_a4/}
}
TY  - JOUR
AU  - E. M. Maleko
TI  - About the method of traces of resolvents calculated precisely
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2011
SP  - 37
EP  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VSGU_2011_5_a4/
LA  - ru
ID  - VSGU_2011_5_a4
ER  - 
%0 Journal Article
%A E. M. Maleko
%T About the method of traces of resolvents calculated precisely
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2011
%P 37-52
%N 5
%U http://geodesic.mathdoc.fr/item/VSGU_2011_5_a4/
%G ru
%F VSGU_2011_5_a4
E. M. Maleko. About the method of traces of resolvents calculated precisely. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 37-52. http://geodesic.mathdoc.fr/item/VSGU_2011_5_a4/

[1] Gelfand I. M., “O tozhdestvakh dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Uspekhi mat. nauk, 11:1 (1956)

[2] Gelfand I. M., Levitan B. M., “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Dokl. Akad. nauk SSSR, 88 (1953) | MR

[3] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp. | MR

[4] Dikii L. A., “Dzeta-funktsiya obyknovennogo differentsialnogo uravneniya na konechnom otrezke”, Izv. Akad. nauk SSSR. Ser. Matem., 19:4 (1955) | MR

[5] Dikii L. A., “Novyi sposob priblizhennogo vychisleniya sobstvennykh chisel zadachi Shturma – Liuvillya”, Dokl. Akad. nauk SSSR, 116:1 (1957) | MR

[6] Dorodnitsyn A. A., Izbrannye nauchnye trudy, v 2 t., 1, Nauchnoe izdanie, M., 1997, 396 pp.

[7] Dorodnitsyn A. A., “Asimptoticheskie zakony raspredeleniya sobstvennykh znachenii dlya nekotorykh osobykh vidov differentsialnykh uravnenii vtorogo poryadka”, Uspekhi mat. nauk, 7:16 (1952)

[8] Dubrovskii V. V., Maleko E. M., “O skhodimosti formalno-sobstvennykh chisel”, Vestnik Chelyabinskogo un-ta. Ser. Mat.-mekh., 1999, no. 1 | MR

[9] Dubrovskii V. V., Maleko E. M., “O skhodimosti formalno-sobstvennykh chisel nekotorykh vpolne nepreryvnykh operatorov”, Differentsialnye i integralnye uravneniya, tez. dokl. mezhdun. nauch. konf., ChelGU, Chelyabinsk, 1999, 131 pp.

[10] Maleko E. M., “K obosnovaniyu metoda vychisleniya sobstvennykh chisel yadernykh operatorov s pomoschyu teorii sledov”, Fundamentalnye i prikladnye issledovaniya, sb. nauch. tr. prepodavatelei i aspirantov Magnitogorskogo gospedinstituta – 1998, Vyp. 2, eds. V. A. Kuznetsov, N. I. Platonov, MGPI, Magnitogorsk, 1998, 99 pp.

[11] Maleko E. M., “K obosnovaniyu metoda vychisleniya sobstvennykh chisel yadernykh operatorov s pomoschyu teorii sledov”, Fundamentalnaya i prikladnaya matematika, 5:4 (1999) | MR | Zbl

[12] Maleko E. M., “Ob otsenkakh formalno-sobstvennykh chisel yadernykh operatorov”, Differentsialnye uravneniya, 37:12 (2001) | MR | Zbl

[13] Maleko E. M., “O novom metode nakhozhdeniya sobstvennykh chisel nesamosopryazhennykh yadernykh operatorov”, Vestnik MaGU, 2002, no. 2–3 | Zbl

[14] Maleko E. M., “K nakhozhdeniyu opredelitelei vozmuscheniya lineinykh ogranichennykh operatorov”, Vestnik MaGU, 2004, no. 6

[15] Maleko E. M., “K obosnovaniyu suschestvovaniya polinomov, postroennykh s pomoschyu sledov vysshikh poryadkov yadernykh operatorov”, Problemy mat. obrazovaniya v ped. vuzakh na sovremennom etape, tez. dokl. konf. vuzov Uralskoi zony, ChGPU, Chelyabinsk, 1998, 98 pp.

[16] Maleko E. M., “K vychisleniyu sobstvennykh chisel yadernykh operatorov s pomoschyu teorii sledov”, Matematicheskoe modelirovanie i kraevye zadachi, tez. dokl. vosmoi mezhvuz. konf., SGTU, Samara, 1998, 108 pp.

[17] Maleko E. M., “Dostatochnoe uslovie suschestvovaniya sobstvennykh chisel nekotorykh vpolne nepreryvnykh operatorov”, Problemy fiz.-mat. obrazovaniya v ped. vuzakh Rossii na sovremennom etape, tez. dokl. vseros. nauch.-prakticheskoi konf., MGPI, Magnitogorsk, 1999, 116 pp.

[18] Maleko E. M., “O skhodimosti formalno-sobstvennykh chisel k sobstvennym chislam nekotorykh vpolne nepreryvnykh operatorov”, Sovremennye podkhody v formirovaniya buduschikh spetsialistov po fiz. i mat. distsiplinam, tez. dokl. regionalnoi nauch. konf., BGP, Ufa, 1999, 118 pp.

[19] Maleko E. M., “Zadacha vosstanovleniya spektra yadernykh operatorov po sledam ego naturalnykh stepenei”, Obratnye i nekorrektno postavlennye zadachi, tez. dokl. mezhdunar. konf., Izd-vo MGU, M., 2001, 96 pp.

[20] Maleko E. M., “O vychislenii sobstvennykh chisel slabo nesamosopryazhennykh diskretnykh operatorov”, Differentsialnye i integralnye uravneniya. Matematicheskie modeli, tez. dokl. mezhdunar. konf., ChelGU, Chelyabinsk, 2002, 132 pp.

[21] Markushevich A. I., Teoriya analiticheskikh funktsii, v 2 t., v. 1, Nauka, M., 1967, 488 pp.

[22] V. A. Sadovnichii i dr., “Korrektnost metoda A. A. Dorodnitsyna priblizhennogo vychisleniya sobstvennykh znachenii odnogo klassa kraevykh zadach”, Differentsialnye uravneniya, 38:4 (2002) | MR

[23] Sadovnichii V. A., Dubrovskii V. V., Maleko E. M., “Ob odnom sposobe priblizhennogo nakhozhdeniya sobstvennykh chisel operatora Shturma – Liuvillya”, Dokl. RAN, 369:1 (1999) | MR

[24] Sadovnichii V. A., Podolskii V. E., “Ob odnom klasse operatorov Shturma – Liuvillya i priblizhennom vychislenii pervykh sobstvennykh znachenii”, Mat. sb., 89:1 (1998)

[25] Sadovnichii V. A., Podolskii V. E., “O vychislenii pervykh sobstvennykh znachenii operatora Shturma – Liuvillya”, Dokl. RAN, 346:2 (1996) | MR

[26] Shkarin S. A., “O sposobe Gelfanda – Dikogo vychisleniya pervykh sobstvennykh znachenii operatora Shturma – Liuvillya”, Vestnik MGU. Ser. 1. Mat.-mekh., 1996, no. 1 | MR