@article{VSGU_2011_5_a4,
author = {E. M. Maleko},
title = {About the method of traces of resolvents calculated precisely},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {37--52},
year = {2011},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2011_5_a4/}
}
E. M. Maleko. About the method of traces of resolvents calculated precisely. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 37-52. http://geodesic.mathdoc.fr/item/VSGU_2011_5_a4/
[1] Gelfand I. M., “O tozhdestvakh dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Uspekhi mat. nauk, 11:1 (1956)
[2] Gelfand I. M., Levitan B. M., “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Dokl. Akad. nauk SSSR, 88 (1953) | MR
[3] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp. | MR
[4] Dikii L. A., “Dzeta-funktsiya obyknovennogo differentsialnogo uravneniya na konechnom otrezke”, Izv. Akad. nauk SSSR. Ser. Matem., 19:4 (1955) | MR
[5] Dikii L. A., “Novyi sposob priblizhennogo vychisleniya sobstvennykh chisel zadachi Shturma – Liuvillya”, Dokl. Akad. nauk SSSR, 116:1 (1957) | MR
[6] Dorodnitsyn A. A., Izbrannye nauchnye trudy, v 2 t., 1, Nauchnoe izdanie, M., 1997, 396 pp.
[7] Dorodnitsyn A. A., “Asimptoticheskie zakony raspredeleniya sobstvennykh znachenii dlya nekotorykh osobykh vidov differentsialnykh uravnenii vtorogo poryadka”, Uspekhi mat. nauk, 7:16 (1952)
[8] Dubrovskii V. V., Maleko E. M., “O skhodimosti formalno-sobstvennykh chisel”, Vestnik Chelyabinskogo un-ta. Ser. Mat.-mekh., 1999, no. 1 | MR
[9] Dubrovskii V. V., Maleko E. M., “O skhodimosti formalno-sobstvennykh chisel nekotorykh vpolne nepreryvnykh operatorov”, Differentsialnye i integralnye uravneniya, tez. dokl. mezhdun. nauch. konf., ChelGU, Chelyabinsk, 1999, 131 pp.
[10] Maleko E. M., “K obosnovaniyu metoda vychisleniya sobstvennykh chisel yadernykh operatorov s pomoschyu teorii sledov”, Fundamentalnye i prikladnye issledovaniya, sb. nauch. tr. prepodavatelei i aspirantov Magnitogorskogo gospedinstituta – 1998, Vyp. 2, eds. V. A. Kuznetsov, N. I. Platonov, MGPI, Magnitogorsk, 1998, 99 pp.
[11] Maleko E. M., “K obosnovaniyu metoda vychisleniya sobstvennykh chisel yadernykh operatorov s pomoschyu teorii sledov”, Fundamentalnaya i prikladnaya matematika, 5:4 (1999) | MR | Zbl
[12] Maleko E. M., “Ob otsenkakh formalno-sobstvennykh chisel yadernykh operatorov”, Differentsialnye uravneniya, 37:12 (2001) | MR | Zbl
[13] Maleko E. M., “O novom metode nakhozhdeniya sobstvennykh chisel nesamosopryazhennykh yadernykh operatorov”, Vestnik MaGU, 2002, no. 2–3 | Zbl
[14] Maleko E. M., “K nakhozhdeniyu opredelitelei vozmuscheniya lineinykh ogranichennykh operatorov”, Vestnik MaGU, 2004, no. 6
[15] Maleko E. M., “K obosnovaniyu suschestvovaniya polinomov, postroennykh s pomoschyu sledov vysshikh poryadkov yadernykh operatorov”, Problemy mat. obrazovaniya v ped. vuzakh na sovremennom etape, tez. dokl. konf. vuzov Uralskoi zony, ChGPU, Chelyabinsk, 1998, 98 pp.
[16] Maleko E. M., “K vychisleniyu sobstvennykh chisel yadernykh operatorov s pomoschyu teorii sledov”, Matematicheskoe modelirovanie i kraevye zadachi, tez. dokl. vosmoi mezhvuz. konf., SGTU, Samara, 1998, 108 pp.
[17] Maleko E. M., “Dostatochnoe uslovie suschestvovaniya sobstvennykh chisel nekotorykh vpolne nepreryvnykh operatorov”, Problemy fiz.-mat. obrazovaniya v ped. vuzakh Rossii na sovremennom etape, tez. dokl. vseros. nauch.-prakticheskoi konf., MGPI, Magnitogorsk, 1999, 116 pp.
[18] Maleko E. M., “O skhodimosti formalno-sobstvennykh chisel k sobstvennym chislam nekotorykh vpolne nepreryvnykh operatorov”, Sovremennye podkhody v formirovaniya buduschikh spetsialistov po fiz. i mat. distsiplinam, tez. dokl. regionalnoi nauch. konf., BGP, Ufa, 1999, 118 pp.
[19] Maleko E. M., “Zadacha vosstanovleniya spektra yadernykh operatorov po sledam ego naturalnykh stepenei”, Obratnye i nekorrektno postavlennye zadachi, tez. dokl. mezhdunar. konf., Izd-vo MGU, M., 2001, 96 pp.
[20] Maleko E. M., “O vychislenii sobstvennykh chisel slabo nesamosopryazhennykh diskretnykh operatorov”, Differentsialnye i integralnye uravneniya. Matematicheskie modeli, tez. dokl. mezhdunar. konf., ChelGU, Chelyabinsk, 2002, 132 pp.
[21] Markushevich A. I., Teoriya analiticheskikh funktsii, v 2 t., v. 1, Nauka, M., 1967, 488 pp.
[22] V. A. Sadovnichii i dr., “Korrektnost metoda A. A. Dorodnitsyna priblizhennogo vychisleniya sobstvennykh znachenii odnogo klassa kraevykh zadach”, Differentsialnye uravneniya, 38:4 (2002) | MR
[23] Sadovnichii V. A., Dubrovskii V. V., Maleko E. M., “Ob odnom sposobe priblizhennogo nakhozhdeniya sobstvennykh chisel operatora Shturma – Liuvillya”, Dokl. RAN, 369:1 (1999) | MR
[24] Sadovnichii V. A., Podolskii V. E., “Ob odnom klasse operatorov Shturma – Liuvillya i priblizhennom vychislenii pervykh sobstvennykh znachenii”, Mat. sb., 89:1 (1998)
[25] Sadovnichii V. A., Podolskii V. E., “O vychislenii pervykh sobstvennykh znachenii operatora Shturma – Liuvillya”, Dokl. RAN, 346:2 (1996) | MR
[26] Shkarin S. A., “O sposobe Gelfanda – Dikogo vychisleniya pervykh sobstvennykh znachenii operatora Shturma – Liuvillya”, Vestnik MGU. Ser. 1. Mat.-mekh., 1996, no. 1 | MR