Asymptotic technique for the solution of fractional equation for ground-water contamination migration
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 104-108
A new technique for defining ground-water asymptotic movement using specific properties of fractional derivatives is introduced in this article. Advantage of the given technique in comparison with traditional techniques used for the analysis of such processes is based on the fact that preliminary definition of contamination concentration at every moment and at each point of stabilization area is not necessary.
Keywords:
fractional derivatives, asymptotic method, ground waters.
@article{VSGU_2011_5_a10,
author = {L. I. Serbina and A. A. Vendina},
title = {Asymptotic technique for the solution of fractional equation for ground-water contamination migration},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {104--108},
year = {2011},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2011_5_a10/}
}
TY - JOUR AU - L. I. Serbina AU - A. A. Vendina TI - Asymptotic technique for the solution of fractional equation for ground-water contamination migration JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2011 SP - 104 EP - 108 IS - 5 UR - http://geodesic.mathdoc.fr/item/VSGU_2011_5_a10/ LA - ru ID - VSGU_2011_5_a10 ER -
%0 Journal Article %A L. I. Serbina %A A. A. Vendina %T Asymptotic technique for the solution of fractional equation for ground-water contamination migration %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2011 %P 104-108 %N 5 %U http://geodesic.mathdoc.fr/item/VSGU_2011_5_a10/ %G ru %F VSGU_2011_5_a10
L. I. Serbina; A. A. Vendina. Asymptotic technique for the solution of fractional equation for ground-water contamination migration. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 104-108. http://geodesic.mathdoc.fr/item/VSGU_2011_5_a10/
[1] Polubarinova-Kochina P. Ya., Teoriya dvizheniya gruntovykh vod, Nauka, M., 1977, 664 pp. | MR
[2] Nigmatulin P. P., “Drobnyi integral i ego fizicheskaya interpretatsiya”, TMF, 90:3 (1992), 354–368 | MR
[3] Serbina L. I., Nelokalnye matematicheskie modeli perenosa v vodonosnykh sistemakh, Nauka, M., 2007, 167 pp. | Zbl
[4] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh primenenie, Izdatelstvo KBNTs RAN, Nalchik, 2000, 299 pp.
[5] Babenko Yu. I., Teplomassoobmen. Metody rascheta teplovykh i diffuzionnykh potokov, Khimiya, L., 1986, 144 pp.
[6] Vendina A. A., “Matematicheskoe modelirovanie massoperenosa v poristykh sredakh”, Nauchnaya zhizn, 2008, no. 3, 21–24