Keywords: Dirichlet problem, nonlinear differential equation, uniqueness.
@article{VSGU_2011_5_a0,
author = {E. I. Abduragimov},
title = {Uniqueness of positive radial-symmetrical solution of {Dirichlet} problem in annular domains for one class of nonlinear differential equations of the second order},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {5--11},
year = {2011},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2011_5_a0/}
}
TY - JOUR AU - E. I. Abduragimov TI - Uniqueness of positive radial-symmetrical solution of Dirichlet problem in annular domains for one class of nonlinear differential equations of the second order JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2011 SP - 5 EP - 11 IS - 5 UR - http://geodesic.mathdoc.fr/item/VSGU_2011_5_a0/ LA - ru ID - VSGU_2011_5_a0 ER -
%0 Journal Article %A E. I. Abduragimov %T Uniqueness of positive radial-symmetrical solution of Dirichlet problem in annular domains for one class of nonlinear differential equations of the second order %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2011 %P 5-11 %N 5 %U http://geodesic.mathdoc.fr/item/VSGU_2011_5_a0/ %G ru %F VSGU_2011_5_a0
E. I. Abduragimov. Uniqueness of positive radial-symmetrical solution of Dirichlet problem in annular domains for one class of nonlinear differential equations of the second order. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 5-11. http://geodesic.mathdoc.fr/item/VSGU_2011_5_a0/
[1] Bandle C., Man Kam Kwong, “Semilinear elliptic problems in annular domains”, Journal of applied Mathematics and Physics(ZAMP), 40 (1989), 245–247 | DOI | MR
[2] Vieri Benci, Donato Fortinato, “Some nonlinear elliptic problems with asymptotic conditions”, Nonlinear Analysis. Theory, Methods and Applications, 3:2 (1979), 157–173 | DOI | MR
[3] Pokhozhaev S. I., “Ob odnoi zadache Ovsyannikova”, PMTF, 1989, no. 2, 5–10 | MR
[4] Galakhov E. I., “Polozhitelnye resheniya kvazilineinogo ellipticheskogo uravneniya”, Matematicheskie zametki, 78:2 (2005), 202–211 | DOI | MR | Zbl
[5] Kuo-Shung Cheng, Jenn-Tsann Lin, “On the elliptic equations $\Delta u=K(x)u^{\alpha}$ and $\Delta u=K(x)\exp^{2u}$”, Transactions of American mathematical society, 304:2 (1987), 633–668 | MR
[6] Gidas B., Spruck J., “Global and local behavior of positive solutions of nonlineare elliptic equations”, Communications on Pure and Applied Mathematics, 4 (1982), 525–598 | MR
[7] Pokhozhaev S. I., “O tselykh radialnykh resheniyakh nekotorykh kvazilineinykh ellipticheskikh uravnenii”, Matematicheskii sbornik, 83:11 (1992), 3–18 | MR
[8] Dancer E. N., Shi Junping, “Uniqueness and nonexistence of positive solutions to semipositive problems”, London Math. Soc., 38:6 (2006), 1033–1044 | DOI | MR | Zbl
[9] Kavano Nichiro, Satsuma Junkichi, Youtsutani Shoji, “On the Positive Solution of an Emden-Type Elliptic Equation”, Proc. Jap. Acad. Ser. A, 61:6 (1985), 186–189 | DOI | MR
[10] Jiang Jue, “On radially symmetric solutions to singular nonlinear Dirichlet problems”, Nonlinear Anal. Theory. Methods and Applications, 24 (1995), 159–163 | DOI | MR | Zbl
[11] Abduragimov E. I., “Polozhitelnoe reshenie dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo ODU chetvertogo poryadka”, Dagestanskii matematicheskii sbornik, 1 (2005), 7–12
[12] Abduragimov E. I., “O polozhitelnom radialno-simmetrichnom reshenii zadachi Dirikhle dlya odnogo nelineinogo uravneniya i chislennom metode ego polucheniya”, Izv. vuzov. Matematika, 1997, no. 5, 3–6 | MR | Zbl
[13] Abduragimov E. I., “O edinstvennosti polozhitelnogo radialno-simmetrichnogo resheniya zadachi Dirikhle v share dlya odnogo nelineinogo differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Matematika, 12 (2008), 3–6 | MR | Zbl
[14] Na Ts., Vychislitelnye metody resheniya prikladnykh granichnykh zadach, Mir, M., 1982, 296 pp. | MR
[15] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, Nauka, M., 1970, 608 pp.