Uniqueness of positive radial-symmetrical solution of Dirichlet problem in annular domains for one class of nonlinear differential equations of the second order
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 5-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence and uniqueness of positive radially symmetric solution of Dirichlet problem in annular domain for one class of nonlinear differential equations of the second order is proved.
Mots-clés : positive solution, annular domain
Keywords: Dirichlet problem, nonlinear differential equation, uniqueness.
@article{VSGU_2011_5_a0,
     author = {E. I. Abduragimov},
     title = {Uniqueness of positive radial-symmetrical solution of {Dirichlet} problem in annular domains for one class of nonlinear differential equations of the second order},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {5--11},
     year = {2011},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_5_a0/}
}
TY  - JOUR
AU  - E. I. Abduragimov
TI  - Uniqueness of positive radial-symmetrical solution of Dirichlet problem in annular domains for one class of nonlinear differential equations of the second order
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2011
SP  - 5
EP  - 11
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VSGU_2011_5_a0/
LA  - ru
ID  - VSGU_2011_5_a0
ER  - 
%0 Journal Article
%A E. I. Abduragimov
%T Uniqueness of positive radial-symmetrical solution of Dirichlet problem in annular domains for one class of nonlinear differential equations of the second order
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2011
%P 5-11
%N 5
%U http://geodesic.mathdoc.fr/item/VSGU_2011_5_a0/
%G ru
%F VSGU_2011_5_a0
E. I. Abduragimov. Uniqueness of positive radial-symmetrical solution of Dirichlet problem in annular domains for one class of nonlinear differential equations of the second order. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 5 (2011), pp. 5-11. http://geodesic.mathdoc.fr/item/VSGU_2011_5_a0/

[1] Bandle C., Man Kam Kwong, “Semilinear elliptic problems in annular domains”, Journal of applied Mathematics and Physics(ZAMP), 40 (1989), 245–247 | DOI | MR

[2] Vieri Benci, Donato Fortinato, “Some nonlinear elliptic problems with asymptotic conditions”, Nonlinear Analysis. Theory, Methods and Applications, 3:2 (1979), 157–173 | DOI | MR

[3] Pokhozhaev S. I., “Ob odnoi zadache Ovsyannikova”, PMTF, 1989, no. 2, 5–10 | MR

[4] Galakhov E. I., “Polozhitelnye resheniya kvazilineinogo ellipticheskogo uravneniya”, Matematicheskie zametki, 78:2 (2005), 202–211 | DOI | MR | Zbl

[5] Kuo-Shung Cheng, Jenn-Tsann Lin, “On the elliptic equations $\Delta u=K(x)u^{\alpha}$ and $\Delta u=K(x)\exp^{2u}$”, Transactions of American mathematical society, 304:2 (1987), 633–668 | MR

[6] Gidas B., Spruck J., “Global and local behavior of positive solutions of nonlineare elliptic equations”, Communications on Pure and Applied Mathematics, 4 (1982), 525–598 | MR

[7] Pokhozhaev S. I., “O tselykh radialnykh resheniyakh nekotorykh kvazilineinykh ellipticheskikh uravnenii”, Matematicheskii sbornik, 83:11 (1992), 3–18 | MR

[8] Dancer E. N., Shi Junping, “Uniqueness and nonexistence of positive solutions to semipositive problems”, London Math. Soc., 38:6 (2006), 1033–1044 | DOI | MR | Zbl

[9] Kavano Nichiro, Satsuma Junkichi, Youtsutani Shoji, “On the Positive Solution of an Emden-Type Elliptic Equation”, Proc. Jap. Acad. Ser. A, 61:6 (1985), 186–189 | DOI | MR

[10] Jiang Jue, “On radially symmetric solutions to singular nonlinear Dirichlet problems”, Nonlinear Anal. Theory. Methods and Applications, 24 (1995), 159–163 | DOI | MR | Zbl

[11] Abduragimov E. I., “Polozhitelnoe reshenie dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo ODU chetvertogo poryadka”, Dagestanskii matematicheskii sbornik, 1 (2005), 7–12

[12] Abduragimov E. I., “O polozhitelnom radialno-simmetrichnom reshenii zadachi Dirikhle dlya odnogo nelineinogo uravneniya i chislennom metode ego polucheniya”, Izv. vuzov. Matematika, 1997, no. 5, 3–6 | MR | Zbl

[13] Abduragimov E. I., “O edinstvennosti polozhitelnogo radialno-simmetrichnogo resheniya zadachi Dirikhle v share dlya odnogo nelineinogo differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Matematika, 12 (2008), 3–6 | MR | Zbl

[14] Na Ts., Vychislitelnye metody resheniya prikladnykh granichnykh zadach, Mir, M., 1982, 296 pp. | MR

[15] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, Nauka, M., 1970, 608 pp.