The evolutionary equation for one-dimensional shear waves of a rupture of strains
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 91-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem about formation and the subsequent distribution of the one-dimensional shear shock wave in nonlinear elastic incompressible isotropic half-space is solved. Application of a method of the spliced asymptotic expansions in front field of a shock wave leads to the evolutionary quasilinear wave equation which is distinct from the equations of Hopf, characteristic for volume shock waves. Some methods of build-up of solutions for the evolutionary equations of the shift waves, allowing to consider the manifold time functions in the capacity of boundary conditions for a field of transitions, are offered.
Keywords: nonlinear elasticity, incompressibility, shock wave, evolutionary equation.
Mots-clés : method of perturbations
@article{VSGU_2011_2_a9,
     author = {Yu. E. Ivanova and V. E. Ragozina},
     title = {The evolutionary equation for one-dimensional shear waves of a~rupture of strains},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {91--104},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_2_a9/}
}
TY  - JOUR
AU  - Yu. E. Ivanova
AU  - V. E. Ragozina
TI  - The evolutionary equation for one-dimensional shear waves of a rupture of strains
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2011
SP  - 91
EP  - 104
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2011_2_a9/
LA  - ru
ID  - VSGU_2011_2_a9
ER  - 
%0 Journal Article
%A Yu. E. Ivanova
%A V. E. Ragozina
%T The evolutionary equation for one-dimensional shear waves of a rupture of strains
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2011
%P 91-104
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2011_2_a9/
%G ru
%F VSGU_2011_2_a9
Yu. E. Ivanova; V. E. Ragozina. The evolutionary equation for one-dimensional shear waves of a rupture of strains. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 91-104. http://geodesic.mathdoc.fr/item/VSGU_2011_2_a9/

[1] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977, 622 pp. | MR

[2] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozhenie k gazovoi dinamike, Nauka, M., 1968, 592 pp. | MR

[3] Blend D. R., Nelineinaya dinamicheskaya teoriya uprugosti, Mir, M., 1972, 183 pp. | MR

[4] Kulikovskii A. G., Sveshnikova E. I., Nelineinye volny v uprugikh sredakh, Moskovskii litsei, M., 1998, 412 pp.

[5] Kulikovskii A. G., Sveshnikova E. I., “Ob udarnykh volnakh, rasprostranyayuschikhsya po napryazhennomu sostoyaniyu v izotropnykh nelineino-uprugikh sredakh”, PMM, 44:3 (1982), 523–534 | MR

[6] Burenin A. A., Chernyshov A. D., “Udarnye volny v izotropnom uprugom prostranstve”, PMM, 42:4 (1978), 711–717 | MR

[7] Ragozina V. E., Voronin I. I., Vekovshinin E. L., “Ob ispolzovanii prifrontovoi asimptotiki v chislennykh resheniyakh dinamicheskikh zadach teorii uprugosti s udarnymi volnami”, no. 115, 1995, 25–27

[8] Gerasimenko E. A., Zavertan A. V., “Raschety dinamiki neszhimaemoi uprugoi sredy pri antiploskom i skruchivayuschem udare”, Vychislitelnaya mekhanika sploshnykh sred, 1:3 (2008), 46–56 | MR

[9] Sedov L. I., Mekhanika sploshnoi sredy, v. 1, Izd. 2-e, ispr. i dop., Nauka, M., 1973, 536 pp.; т. 2, 584 с.

[10] Tomas T., Plasticheskoe techenie i razrushenie v tverdykh telakh, Mir, M., 1964, 308 pp.

[11] Bykovtsev G. I., Ivlev D. D., Teoriya plastichnosti, Dalnauka, Vladivostok, 1998, 528 pp.

[12] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967, 239 pp.

[13] Burenin A. A., Rossikhin Yu. A., “K resheniyu odnomernoi zadachi nelineinoi dinamicheskoi teorii uprugosti so strukturnoi udarnoi volnoi”, Prikl. mekhanika, 26:1 (1990), 103–108 | MR | Zbl

[14] Burenin A. A., Ragozina V. E., “O prifrontovykh asimptotikakh v nelineinoi dinamicheskoi teorii uprugosti”, Problemy mekhaniki sploshnykh sred i elementov konstruktsii, Dalnauka, Vladivostok, 1988, 225–240