The evolution of limits of maximal means for periodic functions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 75-79

Voir la notice de l'article provenant de la source Math-Net.Ru

For the periodic function depending on the time and base variables and differential inclusion with constant right hand the two-sided estimates of the limit of maximal mean is established. The existence of the theorem of limit of maximal mean is proved.
Keywords: limit of maximal mean, differential inclusion, double-ended estimates.
@article{VSGU_2011_2_a7,
     author = {O. P. Filatov},
     title = {The evolution of limits of maximal means for periodic functions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {75--79},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_2_a7/}
}
TY  - JOUR
AU  - O. P. Filatov
TI  - The evolution of limits of maximal means for periodic functions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2011
SP  - 75
EP  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2011_2_a7/
LA  - ru
ID  - VSGU_2011_2_a7
ER  - 
%0 Journal Article
%A O. P. Filatov
%T The evolution of limits of maximal means for periodic functions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2011
%P 75-79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2011_2_a7/
%G ru
%F VSGU_2011_2_a7
O. P. Filatov. The evolution of limits of maximal means for periodic functions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 75-79. http://geodesic.mathdoc.fr/item/VSGU_2011_2_a7/