Ortogonal compact functions for nonlinear spatial equation of viscous transonic flow
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 70-74
Cet article a éte moissonné depuis la source Math-Net.Ru
In the article the unique algorithm of construction of the system of orthogonal compact V.L. Leontev's type functions for the nonlinear spatial equation of viscous transonic flow is described by the method of Galerkin. The result of designing on corresponding subspaces is system of ordinary differential equations with a diagonal matrix.
Keywords:
method of Galerkin, orthogonal Leontiev compact functions, Streng-Fix condition.
@article{VSGU_2011_2_a6,
author = {G. Yu. Severin},
title = {Ortogonal compact functions for nonlinear spatial equation of viscous transonic flow},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {70--74},
year = {2011},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2011_2_a6/}
}
TY - JOUR AU - G. Yu. Severin TI - Ortogonal compact functions for nonlinear spatial equation of viscous transonic flow JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2011 SP - 70 EP - 74 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2011_2_a6/ LA - ru ID - VSGU_2011_2_a6 ER -
G. Yu. Severin. Ortogonal compact functions for nonlinear spatial equation of viscous transonic flow. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 70-74. http://geodesic.mathdoc.fr/item/VSGU_2011_2_a6/
[1] Blatov I. A., Strygin V. V., Elementy teorii splainov i metod konechnykh elementov dlya zadach s pogransloem, Izd-vo VGU, Voronezh, 1997
[2] R. Dodd i dr., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR
[3] Laevskii Yu. M., Metod konechnykh elementov, Izd-vo NGU, Novosibirsk, 1999
[4] Ilin V. P., Metody i tekhnologii konechnykh elementov, Novosibirsk, 2007
[5] Leontev V. L., Ortogonalnye finitnye funktsii i chislennye metody, UlGU, Ulyanovsk, 2003
[6] Agoshkov V. I., Marchuk G. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR | Zbl
[7] Rvachev V. A., Teoriya priblizhenii i atomarnye funktsii, Znanie, M., 1978
[8] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR