Ortogonal compact functions for nonlinear spatial equation of viscous transonic flow
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 70-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article the unique algorithm of construction of the system of orthogonal compact V.L. Leontev's type functions for the nonlinear spatial equation of viscous transonic flow is described by the method of Galerkin. The result of designing on corresponding subspaces is system of ordinary differential equations with a diagonal matrix.
Keywords: method of Galerkin, orthogonal Leontiev compact functions, Streng-Fix condition.
@article{VSGU_2011_2_a6,
     author = {G. Yu. Severin},
     title = {Ortogonal compact functions for nonlinear spatial equation of viscous transonic flow},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {70--74},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_2_a6/}
}
TY  - JOUR
AU  - G. Yu. Severin
TI  - Ortogonal compact functions for nonlinear spatial equation of viscous transonic flow
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2011
SP  - 70
EP  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2011_2_a6/
LA  - ru
ID  - VSGU_2011_2_a6
ER  - 
%0 Journal Article
%A G. Yu. Severin
%T Ortogonal compact functions for nonlinear spatial equation of viscous transonic flow
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2011
%P 70-74
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2011_2_a6/
%G ru
%F VSGU_2011_2_a6
G. Yu. Severin. Ortogonal compact functions for nonlinear spatial equation of viscous transonic flow. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 70-74. http://geodesic.mathdoc.fr/item/VSGU_2011_2_a6/

[1] Blatov I. A., Strygin V. V., Elementy teorii splainov i metod konechnykh elementov dlya zadach s pogransloem, Izd-vo VGU, Voronezh, 1997

[2] R. Dodd i dr., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR

[3] Laevskii Yu. M., Metod konechnykh elementov, Izd-vo NGU, Novosibirsk, 1999

[4] Ilin V. P., Metody i tekhnologii konechnykh elementov, Novosibirsk, 2007

[5] Leontev V. L., Ortogonalnye finitnye funktsii i chislennye metody, UlGU, Ulyanovsk, 2003

[6] Agoshkov V. I., Marchuk G. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR | Zbl

[7] Rvachev V. A., Teoriya priblizhenii i atomarnye funktsii, Znanie, M., 1978

[8] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR