Neuropeptide somatostatin – modulator of central mechanisms of breathing control
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 237-243 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Somatostatin is a hypothalamic neuropeptide suppressing the secretion of somatotropin-releasing-factor, somatotropin and some other physiologically active peptides. Somatostatin and its receptors are widely distributed in many CNS structures and peripheral organs; it suggests the involvement of somatostatin in regulation of different physiological functions. Presence of somatostatin and its receptors in respiratory-related nuclei of the brain stem suggests the involvement of the peptide in the respiratory control. In the paper, data about different physiological effects of somatostatin, particularly regarding the involvement in central mechanisms of the respiratory control, are summarized.
Keywords: breathing, respiratory center, somatostatin, solitary tract nucleus.
@article{VSGU_2011_2_a26,
     author = {I. O. Petryashin},
     title = {Neuropeptide somatostatin~{\textendash} modulator of central mechanisms of breathing control},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {237--243},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_2_a26/}
}
TY  - JOUR
AU  - I. O. Petryashin
TI  - Neuropeptide somatostatin – modulator of central mechanisms of breathing control
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2011
SP  - 237
EP  - 243
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2011_2_a26/
LA  - ru
ID  - VSGU_2011_2_a26
ER  - 
%0 Journal Article
%A I. O. Petryashin
%T Neuropeptide somatostatin – modulator of central mechanisms of breathing control
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2011
%P 237-243
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2011_2_a26/
%G ru
%F VSGU_2011_2_a26
I. O. Petryashin. Neuropeptide somatostatin – modulator of central mechanisms of breathing control. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 237-243. http://geodesic.mathdoc.fr/item/VSGU_2011_2_a26/

[1] Guillemin R., “Hypothalamic hormones”, J. Endocrinol., 184 (2005), 11–28 | DOI

[2] Kumar U., Rehfeld J. F., Bungaard J. R., “Somatostatin and somatostatin receptors”, Cellular peptide hormone synthesis and secretory pathways, Springer, Berlin, 2010, 137–185

[3] I. Wulfsen et al., “Expression patterns or rat somatostatin receptor genes in pre- and post-natal brain and pituitary”, J. Neurochem., 61 (1993), 1549–1552 | DOI

[4] N. Sharif et al., “Coexpression of somatostatin receptor subtype 5 affects internalization and trafficking of somatostatin receptor subtype 2”, Endocrinology, 148 (2007), 2095–2105 | DOI | MR

[5] C. Viollet et al., “Somatostatinergic systems in brain: Networks and functions”, Molecular and Cellular Endocrinology, 286 (2008), 75–87 | DOI

[6] Ben-Shlomo A., Melmed S., “Acromegaly”, Endocrinol. Metab. Clin. North. Am., 37 (2008), 101–120 | DOI

[7] M. V. Davi et al., “Sleep apnoea syndrome is highly prevalent in acromegaly and only partially reversible after biochemical control of the disease”, Eur. J. of Endocrinology, 159 (2008), 533–540 | DOI

[8] Greenough A., Milner A. D., Neonatal respiratory disorders, Arnold, London, 2003, 550 pp.

[9] M. J. Low et al., “Somatostatin is required for masculinization of growth hormone-regulated hepatic gene expression but not of somatic growth”, J. Clin. Invest., 107 (2001), 1571–1580 | DOI

[10] A. L. Barkan et al., “Ghrelin secretion in humans is sexually dimorphic, suppressed by somatostatin, and not affected by the ambient growth hormone levels”, J. Clin. Endocrinol. Metab., 88, 2180–2180 | DOI

[11] Kumar U., “Expression of somatostatin receptor subtypes (SSTR1-5) in Alzheimer's disease brain: an immunohistochemical analysis”, Neuroscience, 134 (2005), 525–538 | DOI

[12] Kaczynska K., Szereda-Przestaszewska M., “Depressive cardio-respiratory effects of somatostatin in anaesthetized rats”, Respir. Physiol. Neurobiol., 170 (2010), 273–278 | DOI

[13] M. Kalia et al., “Somatostatin produces apnea and is localized in medullary respiratory nuclei: a possible role in apneic syndromes”, Brain Research., 296 (1984), 339–344 | DOI

[14] A. G. Leibstein et al., “Mapping of different neuropeptides in the lower brainstem of the rat: with special reference to the ventral surface”, J. Auton. Nerv. Syst., 14 (1985), 299–313 | DOI

[15] Z. B. Chen et al., “Antagonistic effects of somatostatin and substance P on respiratory regulation in the rat ventrolateral medulla oblongata”, Brain Research., 556 (1991), 13–21 | DOI

[16] Pedersen M. E. F., Dorrington K. L., Robbins P. A., “Effects of somatostatin on the control of breathing in humans”, Journal of physiology, 521 (1999), 289–297 | DOI

[17] R. L. Stornetta et al., “A group of glutamatergic interneurons expressing high levels of both neurokinin-1 receptors and somatostatin identifies the region of the pre-Botzinger complex”, J. Comp. Neurology, 455 (2003), 499–512 | DOI

[18] J. C. Smith et al., “Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals”, Science, 254 (1991), 726–729 | DOI

[19] Grilli M., Raiteri L., Pittaluga A., “Somatostatin inhibits glutamate release from mouse cerebrocortical nerve endings through presynaptic sst2 receptors linked to the adenylyl cyclase-protein kinase A pathway”, Neuropharmacology, 46 (2004), 388–396. | DOI

[20] W. Tan et al., “Silencing preBotzinger complex somatostatin-expressing neurons induces persistent apnea in awake rat”, Nat. Neurosci., 11 (2008), 538–540 | DOI

[21] N. A. Merkulova i dr., Dykhatelnyi tsentr i regulyatsiya ego deyatelnosti suprabulbarnymi strukturami, Samarskii universitet, Samara, 2007, 169 pp.

[22] P. G. R. Burke et al., “Somatostatin selectively ablates post-inspiratory activity after injection into the Botzinger complex”, Neuroscience, 167 (2010), 528–539. | DOI

[23] P. A. Gray et al., “Developmental Origin of PreBotzinger Complex Respiratory Neurons”, J. Neurosci., 30(44) (2010), 14883–14895 | DOI

[24] T. Zeyda et al., “Impairment in motor learning of somatostatin null mutant mice”, Brain Research., 906 (2001), 107–114. | DOI

[25] Fong A. Y., Potts J. T., “Neurokinin-1 receptor activation in Botzinger complex evokes bradypnoea”, J. Physiol., 575 (2006), 869–885 | DOI

[26] T. Jacquin et al., “Somatostatin depresses excitability in neurons of the solitary tract complex through hyperpolarization and augmentation of IM, a non-inactivating voltage-dependent outward current blocked by muscarinic agonists”, Proc. Natl. Acad. Sci. USA, 85 (1988), 948–952 | DOI

[27] Pittman Q. J., Siggins G. R., “Somatostatin hyperpolarizes hippocampal pyramidal cells in vitro”, Brain Research., 221 (1981), 402–408 | DOI

[28] A. Harfstrand et al., “Somatostatin induced apnoea: prevention by central and peripheral administration of the opiate receptor blocking agent naloxone”, Acta Physiol. Scand., 125 (1985), 91–95 | DOI

[29] Llona I., Ampuero E., Eugenin J. L., “Somatostatin inhibition of fictive respiration is modulated by pH”, Brain Research., 1026 (2004), 136–142 | DOI