@article{VSGU_2011_2_a25,
author = {K. A. Mistryugov and A. N. Inyushkin},
title = {Modulation of the circadian rhythm of locomotor activity by insulin},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {232--236},
year = {2011},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2011_2_a25/}
}
TY - JOUR AU - K. A. Mistryugov AU - A. N. Inyushkin TI - Modulation of the circadian rhythm of locomotor activity by insulin JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2011 SP - 232 EP - 236 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2011_2_a25/ LA - ru ID - VSGU_2011_2_a25 ER -
K. A. Mistryugov; A. N. Inyushkin. Modulation of the circadian rhythm of locomotor activity by insulin. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 232-236. http://geodesic.mathdoc.fr/item/VSGU_2011_2_a25/
[1] Unger J. W., Betz M., “Insulin receptors and signal transduction proteins in the hypothalamo-hypophyseal system: A review on morphological findings and functional implications”, Histol Histpathol., 13 (1998), 1215–1224
[2] J. L. Marks et al., “Localization of insulin receptor mRNA in rat brain by in situ hybridization”, Endocrinology, 12 (1990), 3234–3236 | DOI | MR
[3] E. S. Corp et al., “Localization of 1251-insulin binding sites in the rat hypothalamus by quantitative autoradiography”, Neurosci Lett., 70 (1986), 17–22 | DOI
[4] Structure-function relationships of insulin receptor interactions in cultured mouse astrocytes, Brain Res., 529 (1990), 329–332 | DOI
[5] Abbott M. A., Wells D. G., Fallon J. R., “The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses”, Neurosci., 19 (1999), 7300–7308
[6] Waldbillig R. J., LeRoith D., “Insulin receptors in the peripheral nervous system: a structural and functional analysis”, Brain Res., 409 (1987), 215–220 | DOI
[7] Havrankova J., Brownstein M., “Concentrations of insulin and of insulin receptors in the brain are independent of peripheral insulin levels”, Clin. Invest., 64 (1979), 636–642 | DOI
[8] Frey W. H., “Bypassing the blood-brain barrier to deliver therapeutic agents to the brain and spinal cord”, Drug Deliv. Tech., 2 (2002), 46–49
[9] C. Benedict et al., “Intranasal insulin improves memory in humans: superiority of insulin aspart”, Neuropsychopharmacology, 32 (2007), 239–243 | DOI
[10] A. Bohringer et al., “Intranasal insulin attenuates the hypothalamic-pituitary-adrenal axis response to psychosocial stress”, Psychoneuroendocrinology, 33 (2008), 1394–1400 | DOI
[11] L. R. Hanson et al., “Intranasal administration of hypocretin 1 (orexin A) bypasses the blood-brain barrier and targets the brain: a new strategy for the treatment of narcolepsy”, Drug Deliv. Tech., 4 (2004), 1–9
[12] G. F. Anhe et al., “In vivo activation of insulin receptor tyrosine kinase by melatonin in the rat hypothalamus”, J. Neurochem., 90 (2004), 559–566 | DOI
[13] E. C. Beattie et al., “Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD”, Nat Neuroski., 3 (2000), 1291–1300 | DOI
[14] C. M. Cheng et al., “Insulin-like growth factor 1 is essential for normal dendritic growth”, Neurosci Res., 73 (2003), 1–9 | DOI
[15] J. T. Dou et al., “Insulin receptor signaling in long-term memory consolidation following spatial learning”, Learn Mem., 12 (2005), 646–655 | DOI | MR
[16] Z. Zhao et al., “Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction”, Schizophr Res., 84 (2006), 1–14 | DOI
[17] Prosser R. A., Bergeron H. E., “Leptin phase-advances the rat suprachiasmatic circadian clock in vitro”, Neurosci. Lett., 336 (2003), 139–142 | DOI
[18] Numan S., Russell D. S., “Discrete expression of insulin receptor substrate-4 mRNA in adult rat brain”, Mol. Brain. Res., 72 (1999), 97–102 | DOI