Quantum theory of spontaneous scattering of light and coherent states of three-dimensional Lorentz group
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 171-178

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to applications of group-theoretic coherent states to describe the nonlinear optical effects. Important in modern quantum information process of parametric down–conversion is studied. It is shown that the use of superpositions of coherent states of $SU (1,1)$ allows to increase the squeezing of generated photon pairs.
Keywords: quantum optics, coherent states, squeezing.
Mots-clés : Lorentz group
@article{VSGU_2011_2_a16,
     author = {A. V. Gorokhov and D. I. Umov},
     title = {Quantum theory of spontaneous scattering of light and coherent states of three-dimensional {Lorentz} group},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {171--178},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_2_a16/}
}
TY  - JOUR
AU  - A. V. Gorokhov
AU  - D. I. Umov
TI  - Quantum theory of spontaneous scattering of light and coherent states of three-dimensional Lorentz group
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2011
SP  - 171
EP  - 178
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2011_2_a16/
LA  - ru
ID  - VSGU_2011_2_a16
ER  - 
%0 Journal Article
%A A. V. Gorokhov
%A D. I. Umov
%T Quantum theory of spontaneous scattering of light and coherent states of three-dimensional Lorentz group
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2011
%P 171-178
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2011_2_a16/
%G ru
%F VSGU_2011_2_a16
A. V. Gorokhov; D. I. Umov. Quantum theory of spontaneous scattering of light and coherent states of three-dimensional Lorentz group. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 171-178. http://geodesic.mathdoc.fr/item/VSGU_2011_2_a16/