Electromagnetic form factors of pseudoscalar mesons
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 148-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mean-square radii and electromagnetic form factors of light mesons are obtained in the framework of Poincare covariant quark model, which is based on the point form of Poincare invariant quantum mechanics. Calculations are performed with the use of the requirement of self-consistent description of electroweak properties and masses of pseudoscalar and vector mesons.
Keywords: relativistic quark model mesons, leptonic decay constants, electromagnetic form factors.
Mots-clés : rms radii
@article{VSGU_2011_2_a14,
     author = {V.V.Andreev and A. F. Krutov},
     title = {Electromagnetic form factors of pseudoscalar mesons},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {148--163},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_2_a14/}
}
TY  - JOUR
AU  - V.V.Andreev
AU  - A. F. Krutov
TI  - Electromagnetic form factors of pseudoscalar mesons
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2011
SP  - 148
EP  - 163
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2011_2_a14/
LA  - ru
ID  - VSGU_2011_2_a14
ER  - 
%0 Journal Article
%A V.V.Andreev
%A A. F. Krutov
%T Electromagnetic form factors of pseudoscalar mesons
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2011
%P 148-163
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2011_2_a14/
%G ru
%F VSGU_2011_2_a14
V.V.Andreev; A. F. Krutov. Electromagnetic form factors of pseudoscalar mesons. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 148-163. http://geodesic.mathdoc.fr/item/VSGU_2011_2_a14/

[1] J. Volmer et al., “New results for the charged pion electromagnetic form-factor”, Phys. Rev. Lett., 86, 2001, 1713–1716 | DOI

[2] Perdrisat C. F., “Proton elastic form factor: The JLab data”, Eur. Phys. J., A17 (2003), 317–321

[3] Gross F., Relativistic quantum mechanics and field theory, John Wiley and Sons Inc., N. Y., 1993, 629 pp. | MR

[4] Dirac P. A. M., “Forms of relativistic dynamics”, Rev. of Modern Phys., 21 (1949), 392–399 | DOI | MR | Zbl

[5] F. Cardarelli et al., “Charge form-factor of pi and K mesons”, Phys. Rev., D53 (1996), 6682–6685

[6] Coester F., Polyzou W. N., “Charge form factors of quark-model pions”, Phys. Rev., C71 (2005), 028202

[7] Jaus W., “Relativistic constituent quark model of electroweak properties of light mesons”, Phys. Rev., D44 (1991), 2851–2859

[8] Schlumpf F., “Charge form-factors of pseudoscalar mesons”, Phys. Rev., D50 (1994), 6895–6898

[9] Krutov A. F., “Elektroslabye svoistva legkikh mezonov v relyativistskoi modeli sostavnykh kvarkov”, YaF, 60:8 (1997), 1442–1450

[10] Krutov A. F., Troitsky V. E., “Relativistic instant–form approach to the structure of two–body composite systems”, Phys. Rev. C, 2002, 045501 | DOI

[11] Allen T. W., Klink W. H., “Pion charge form factor in point form relativistic dynamics”, Phys. Rev., C58 (1998), 3670–3673

[12] Desplanques B., Theussl L., “Form factors in the 'point form' of relativistic quantum mechanics: Single and two-particle currents”, Eur. Phys. J., A21 (2004), 93

[13] L. Theussl et al., “Comparison of different boost transformations for the calculation of form factors in relativistic quantum mechanics”, Few Body Syst. Suppl., 14 (2003), 393 | DOI

[14] Desplanques B., “Dirac's inspired point form and hadron form factors”, Nucl. Phys., A755 (2005), 303–306

[15] Godfrey S., Isgur N., “Mesons in a relativized quark model with chromodynamics”, Phys. Rev., D32 (1985), 189–231 | MR

[16] Andreev V. V., “Opisanie leptonnykh raspadov v ramkakh puankare-kovariantnoi kvarkovoi modeli”, Vestsi NAH Belarusi. Ser. Fiz.-mat. navuk, 2000, no. 2, 93–98

[17] Andreev V. V., Krutov A. F., “Komptonovskaya polyarizuemost kaonov v relyativistskoi gamiltonovoi dinamike”, Vestnik Samarskogo gosudarstvennogo universiteta. Estestvennonauchnaya seriya, 2004, Spets. vypusk, 111–127

[18] Ebert D., Faustovc R. N., Galkin V. O., “Quark-antiquark potential with retardation and radiative contributions and the heavy quarkonium mass spectra”, Phys. Rev., D62 (2000), 034014

[19] Andreev V. V., “Oblast konstanty KKhD nizhe 1 GeV v puankare-kovariantnoi modeli”, Pisma v EChAYa, 8:4(167) (2011), 581–596

[20] Badalian A. M., Kuzmenko D. S., “Freezing of QCD coupling alpha(s) affects the short distance static potential”, Phys. Rev., D65 (2002), 016004

[21] C. Amsler et al., “The Review of Particle Physics”, Physics Letters, B667 (2008), 1, 2009 partial update for the 2010 edition

[22] Jaus W., “Semileptonic decays of B and D mesons in the light front formalism”, Phys. Rev., D41 (1990), 3394

[23] Simula S., “Comparison among Hamiltonian light-front formalisms at $\operatorname{q+ =0}$ and $\operatorname{q+ not=0}$: Space-like elastic form factors of pseudoscalar and vector mesons”, Phys. Rev., C66 (2002), 035201

[24] Cheshkov A. A., Shirokov Yu. M., “Invariantnaya parametrizatsiya lokalnykh operatorov”, ZhETF, 44:6 (1963), 1982–1992 | MR

[25] Andreev V. V., Krutov A. F., “Elektromagnitnye formfaktory mezonov”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1(6), 22–24

[26] Lucha W., Rupprecht H., Schoberl F. F., “Relativistic treatment of fermion anti-fermion bound states”, Phys. Rev., D44 (1991), 242–249

[27] Chung P. L., Coester F., “Relativistic constituent quark model of nucleon form-factors”, Phys. Rev., D44 (1991), 229–241

[28] F. Cardarelli et al., “Hard constituent quarks and electroweak properties of pseudoscalar mesons”, Phys. Lett., B332 (1994), 1–7

[29] Gerasimov S. B., “Magnetic moments of baryons and strange content of the nucleon”, Phys. Lett., B357 (1995), 666–670

[30] Andreev V. V., “Analiticheskoe vychislenie feinmanovskikh amplitud”, Yadernaya fizika, 66:2 (2003), 410–420

[31] S. R. Amendolia et al., “A measurement of the space-like pion electromagnetic form-factor”, Nucl. Phys., B277 (1986), 168–216 | DOI

[32] S. R. Amendolia et al., “A measurement of the pion charge radius”, Phys. Lett., B146 (1984), 116–131

[33] E. B. Dally et al., “Direct measurement of the negative kaon form-factor”, Phys. Rev. Lett., 45 (1980), 232–235 | DOI

[34] I. Eschrich et al., “Measurement of the Sigma-charge radius by Sigma-electron elastic scattering”, Phys. Lett., B522 (2001), 233–239

[35] A Measurement of the kaon charge radius, Phys. Lett., B178 (1986), 435–454

[36] W.-M. Yao et al., “Review of Particle Physics”, Journal of Physics G, 33 (2006), 1 | DOI | Zbl

[37] Maris P., Tandy P. C., “Electromagnetic transition form factors of light mesons”, Phys. Rev., C65 (2002), 045211

[38] Burden C. J., Roberts C. D., Thomson M. J., “Electromagnetic Form Factors of Charged and Neutral Kaons”, Phys. Lett., B371 (1996), 163–168

[39] Ebert D., Faustov R. N., Galkin V. O., “Masses and electroweak properties of light mesons in the relativistic quark model”, Eur. Phys. J., C47 (2006), 745–755 | DOI

[40] C. R. Munz et al., “Electromagnetic meson form-factors in the Salpeter model”, Phys. Rev., C52 (1995), 2110–2119

[41] A. Lai et al., “Investigation of $\operatorname{K(L,S) --> pi+ pi- e+ e- decays}$”, Eur. Phys. J., C30 (2003), 33–49

[42] T. Horn et al.], “Determination of the Charged Pion Form Factor at $Q^2=1,60$ and $2,45$ (GeV/c)$^2$”, Phys. Rev. Lett., 97 (2006), 192001 | DOI

[43] V. Tadevosyan et al., “Determination of the pion charge form factor for $Q^2=0,60-1,60$ GeV$^2$”, Phys. Rev., C75 (2007), 055205

[44] C. J. Bebek et al., “Electroproduction of single pions at low epsilon and a measurement of the pion form-factor up to $q^2$=10-GeV$^2$”, Phys. Rev., D17 (1978), 1693–1712.

[45] Donoghue J. F., Na E. S., “Asymptotic limits and the structure of the pion form factor”, Phys. Rev. D, 56:11 (1997), 7073–7076 | DOI

[46] Krutov A. F., Troitskii V. E., “Mgnovennaya forma puankare-invariantnoi kvantovoi mekhaniki i opisanie struktury sostavnykh sistem”, EChAYa, 40:2 (2009), 268–318