Refined study of stress-strain state near the crack tip under cyclic loading in a damaged medium
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 105-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the fatigue growing crack problems in damaged media and mutual effects of damage on the evolution of the stress-strain state near the crack tip and vice versa. The new asymptotic study of fatigue crack growth in an isotropic linear elastic material based on the continuum damage mechanics in the coupled (elasticity–damage) formulation under plane strain and plane stress conditions is proposed. 1) The new numerical solution of the two-point boundary value problem for non-linear ordinary differential equations to which the fatigue crack growing problem reduces is obtained; 2) The new analytical presentation of stress, strain and continuity fields both for plane strain and plane stress conditions is given. The results obtained differ from Zhao and Zhang's solution where the original formulation of the problem for plane stress conditions has been proposed.
Keywords: fatigue crack growth, coupled statement of the problem, elasticity–damage coupling, active damage accumulation zone (process zone), totally damaged zone.
@article{VSGU_2011_2_a10,
     author = {L. V. Stepanova},
     title = {Refined study of stress-strain state near the crack tip under cyclic loading in a~damaged medium},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {105--115},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2011_2_a10/}
}
TY  - JOUR
AU  - L. V. Stepanova
TI  - Refined study of stress-strain state near the crack tip under cyclic loading in a damaged medium
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2011
SP  - 105
EP  - 115
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2011_2_a10/
LA  - ru
ID  - VSGU_2011_2_a10
ER  - 
%0 Journal Article
%A L. V. Stepanova
%T Refined study of stress-strain state near the crack tip under cyclic loading in a damaged medium
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2011
%P 105-115
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2011_2_a10/
%G ru
%F VSGU_2011_2_a10
L. V. Stepanova. Refined study of stress-strain state near the crack tip under cyclic loading in a damaged medium. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 105-115. http://geodesic.mathdoc.fr/item/VSGU_2011_2_a10/

[1] Zhao J., Zhao X., “The asymptotic study of fatigue crack growth based on damage mechanics”, Engng. Fracture Mechanics, 50:1 (1995), 131–141. | DOI

[2] Astafev V. I., Grigorova T. V., Pastukhov V. A., “Vliyanie povrezhdennosti materiala na napryazhenno-deformirovannoe sostoyanie v okrestnosti vershiny treschiny pri polzuchesti”, FKhMM, 28:1 (1992), 5–11 | MR

[3] Astafev V. I., Grigorova T. V., “Raspredelenie napryazhenii i povrezhdennosti u vershiny rastuschei v protsesse polzuchesti treschiny”, Izv. RAN. Mekh. tverd. tela, 1995, no. 3, 160–166

[4] Murakami S., “Mechanical modeling of material damage”, J. Appl. Mech., 55:2 (1988), 280–286 | DOI

[5] Murakami S., Liu Y., Mizuno M., “Computational methods for creep fracture analysis by damage mechanics”, Comput. Methods Appl. Mech. Engng., 183 (2000), 15–33 | DOI | Zbl

[6] Murakami S., Hirano T., Liu Y., “Asymptotic fields of stress and damage of a mode I creep crack in steady – state growth”, Int. J. Solids Struct., 37 (2000), 6203–6220. | DOI | Zbl

[7] Mou Y., Han R. P. S., “Influence of damage in the vicinity of a macrocrack tip”, Engng. Fracture Mechanics, 55:4 (1996), 617–632 | DOI

[8] Stepanova L. V., Matematicheskie metody mekhaniki razrusheniya, Samarskii universitet, Samara, 2006, 232 pp.

[9] Korolev I. K., Petinov S. V., Freidin A. B., “Chislennoe modelirovanie nakopleniya povrezhdenii i razvitiya ustalostnoi treschiny v uprugikh materialakh”, Vychislitelnaya mekhanika sploshnykh sred, 2:3 (2009), 34–43

[10] Volkov I. A., Korotkikh Yu. G., Tarasov I. S., “Chislennoe modelirovanie nakopleniya povrezhdenii pri slozhnom plasticheskom deformirovanii”, Vychislitelnaya mekhanika sploshnykh sred, 2:1 (2009), 5–18

[11] Tikhomirov V. M., Suvorin P. G., “Razvitie ustalostnykh treschin smeshannogo tipa v obraztsakh iz stali”, PMTF, 45:1 (2004), 135–142 | MR

[12] Stepanova L. V., Matematicheskie metody mekhaniki razrusheniya, Fizmatlit, M., 2009, 336 pp. | Zbl

[13] Volkov I. A., Korotkikh Yu. G., Uravneniya sostoyaniya vyazkouprugoplasticheskikh sred s povrezhdeniyami, Fizmatlit, M., 2008, 424 pp.

[14] Burdukovskii V. G., Kamantsev I. S., “Kriterii nakopleniya povrezhdenii i razrusheniya pri mnogotsiklovoi ustalosti metallicheskikh materialov (obzor)”, Zavodskaya laboratoriya. Diagnostika materialov, 75:7 (2009), 36–41

[15] Belodedenko S. V., “Prognozirovanie povrezhdeniya i zhivuchesti elementov konstruktsii s ispolzovaniem modelei nakopleniya povrezhdenii”, Zavodskaya laboratoriya. Diagnostika materialov, 76:1 (2010), 49–52

[16] Astafev V. I., Radaev Yu. N., Stepanova L. V., Nelineinaya mekhanika razrusheniya, Samarskii universitet, Samara, 2001, 632 pp.

[17] Li J., Recho N., Methodes asymptotiques en mecanique de la rupture, Hermes Science Publications, Paris, 2002, 262 pp.

[18] Kukudzhanov V. N., Kompyuternoe modelirovanie deformirovaniya, povrezhdaemosti i razrusheniya neuprugikh materialov i konstruktsii, MFTI, M., 2008, 215 pp.

[19] Voyiadjis G. Z., Kattan P. I., Advances in Damage Mechanics: Metals and Metal Matrix Composites, Elsevier, Oxford, 2006, 708 pp.

[20] Kakhaner D., Mouler K., Nesh S., Chislennye metody i programmnoe obespechenie, Mir, M., 1998