The system of weighted exponentials with power weights
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 15-25
Cet article a éte moissonné depuis la source Math-Net.Ru
The system of weighted exponentials $\left(\mid x\mid ^{\alpha }\exp^{i\lambda _{n}x}\right)_{n\in \mathbb{Z}}$ with power weights is considered in this paper, where $\lambda_{n}\in \mathbb{R}$. We find conditions on power indicator $\alpha$ which provide such properties of the system as to be a frame, Bessel system, Schauder basis in the space $L^{2}[-\pi ,\pi ]$.
Keywords:
Bessel sequence, frame, system of weighted exponentials, complete systems.
@article{VSGU_2011_2_a1,
author = {E. S. Golubeva},
title = {The system of weighted exponentials with power weights},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {15--25},
year = {2011},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2011_2_a1/}
}
E. S. Golubeva. The system of weighted exponentials with power weights. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 15-25. http://geodesic.mathdoc.fr/item/VSGU_2011_2_a1/
[1] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2002 | MR
[2] Heil C., Kutyniok G., “Density of frames and Shauder bases of windowed exponentials”, Houston Jornal of Mathematics, 34:2 (2008) | MR | Zbl
[3] Babenko K. I., “O sopryazhennykh funktsiyakh”, Doklady Akademii nauk SSSR, 62:2 (1948) | Zbl
[4] Kashin B. S., Kulikova T. Yu., “Zamechanie ob approksimatsionnykh svoistvakh freimov obschego vida”, Matem. zametki, 72:2 (2002), 312–315 | DOI | MR | Zbl
[5] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, AFTs, M., 1999 | MR | Zbl
[6] Freizer M., Vvedenie v veivlety v svete lineinoi algebry, BINOM, M., 2008