@article{VSGU_2011_2_a0,
author = {A. A. Abashkin},
title = {One-valued solvability of a~nonlocal problem for the axisymmetric {Helmholtz} equation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {5--14},
year = {2011},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2011_2_a0/}
}
TY - JOUR AU - A. A. Abashkin TI - One-valued solvability of a nonlocal problem for the axisymmetric Helmholtz equation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2011 SP - 5 EP - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2011_2_a0/ LA - ru ID - VSGU_2011_2_a0 ER -
A. A. Abashkin. One-valued solvability of a nonlocal problem for the axisymmetric Helmholtz equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 5-14. http://geodesic.mathdoc.fr/item/VSGU_2011_2_a0/
[1] Moiseev E. I., “O razreshimosti odnoi nelokalnoi kraevoi zadachi”, Differents. uravneniya, 37:11 (2001), 1565–1567 | MR | Zbl
[2] Valitov I. R., “Reshenie nelokalnoi zadachi dlya vyrozhdayuschegosya ellipticheskogo uravneniya spektralnym metodom”, Trudy mezhdunarodnoi nauchnoi konferentsii, v. 1, Gilem, Ufa, 2003, 100–110
[3] Sabitov K. B., Sidorenko O. G., “Ob odnoznachnoi razreshimosti nelokalnoi zadachi dlya vyrozhdayuschegosya ellipticheskogo uravneniya spektralnym metodom”, Trudy mezhdunarodnoi nauchnoi konferentsii, v. 1, Gilem, Ufa, 2003, 213–219
[4] Beitmen G., Erdein A., Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1973, 296 pp.
[5] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990, 528 pp. | MR | Zbl
[6] Moiseev E. I., “O reshenii spektralnym metodom odnoi nelokalnoi kraevoi zadachi”, Differents. uravneniya, 35:8 (1999), 1094–1100 | MR | Zbl