One-valued solvability of a~nonlocal problem for the axisymmetric Helmholtz equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 5-14
Voir la notice de l'article provenant de la source Math-Net.Ru
A nonlocal boundary value problem for degenerate elliptic equation is considered. Boundary value of this problem considerably depend on low derivative coefficient changes. Existence and uniqueness of a solution are proved.
Keywords:
non-local problem, Bessel equation, Riesz basis, uniform convergence of series.
@article{VSGU_2011_2_a0,
author = {A. A. Abashkin},
title = {One-valued solvability of a~nonlocal problem for the axisymmetric {Helmholtz} equation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {5--14},
publisher = {mathdoc},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2011_2_a0/}
}
TY - JOUR AU - A. A. Abashkin TI - One-valued solvability of a~nonlocal problem for the axisymmetric Helmholtz equation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2011 SP - 5 EP - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2011_2_a0/ LA - ru ID - VSGU_2011_2_a0 ER -
A. A. Abashkin. One-valued solvability of a~nonlocal problem for the axisymmetric Helmholtz equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2011), pp. 5-14. http://geodesic.mathdoc.fr/item/VSGU_2011_2_a0/