The theorem of averaging and indeterminate conditional periodic motions
    
    
  
  
  
      
      
      
        
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 87-92
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that the limit of the maximal mean is equal to the sum of the space average of the function and the addition. The addition is the function of the maximal norm of the speed over the minimal norm of the speed. If the maximal norm is equal to the minimal norm we have the classic theorem of averaging.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
theorem of averaging, rational independent numbers, differential inclusion, averaging, limit of maximal mean.
Mots-clés : torus
                    
                  
                
                
                Mots-clés : torus
@article{VSGU_2010_6_a9,
     author = {O. P. Filatov},
     title = {The theorem of averaging and indeterminate conditional periodic motions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {87--92},
     publisher = {mathdoc},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2010_6_a9/}
}
                      
                      
                    TY - JOUR AU - O. P. Filatov TI - The theorem of averaging and indeterminate conditional periodic motions JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2010 SP - 87 EP - 92 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2010_6_a9/ LA - ru ID - VSGU_2010_6_a9 ER -
O. P. Filatov. The theorem of averaging and indeterminate conditional periodic motions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 87-92. http://geodesic.mathdoc.fr/item/VSGU_2010_6_a9/
