The theorem of averaging and indeterminate conditional periodic motions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 87-92

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the limit of the maximal mean is equal to the sum of the space average of the function and the addition. The addition is the function of the maximal norm of the speed over the minimal norm of the speed. If the maximal norm is equal to the minimal norm we have the classic theorem of averaging.
Keywords: theorem of averaging, rational independent numbers, differential inclusion, averaging, limit of maximal mean.
Mots-clés : torus
@article{VSGU_2010_6_a9,
     author = {O. P. Filatov},
     title = {The theorem of averaging and indeterminate conditional periodic motions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {87--92},
     publisher = {mathdoc},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2010_6_a9/}
}
TY  - JOUR
AU  - O. P. Filatov
TI  - The theorem of averaging and indeterminate conditional periodic motions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2010
SP  - 87
EP  - 92
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2010_6_a9/
LA  - ru
ID  - VSGU_2010_6_a9
ER  - 
%0 Journal Article
%A O. P. Filatov
%T The theorem of averaging and indeterminate conditional periodic motions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2010
%P 87-92
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2010_6_a9/
%G ru
%F VSGU_2010_6_a9
O. P. Filatov. The theorem of averaging and indeterminate conditional periodic motions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 87-92. http://geodesic.mathdoc.fr/item/VSGU_2010_6_a9/