The theorem of averaging and indeterminate conditional periodic motions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 87-92
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the limit of the maximal mean is equal to the sum of the space average of the function and the addition. The addition is the function of the maximal norm of the speed over the minimal norm of the speed. If the maximal norm is equal to the minimal norm we have the classic theorem of averaging.
Keywords:
theorem of averaging, rational independent numbers, differential inclusion, averaging, limit of maximal mean.
Mots-clés : torus
Mots-clés : torus
@article{VSGU_2010_6_a9,
author = {O. P. Filatov},
title = {The theorem of averaging and indeterminate conditional periodic motions},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {87--92},
year = {2010},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2010_6_a9/}
}
O. P. Filatov. The theorem of averaging and indeterminate conditional periodic motions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 87-92. http://geodesic.mathdoc.fr/item/VSGU_2010_6_a9/
[1] Filatov O. P., Khapaev M. M., Usrednenie sistem differentsialnykh vklyuchenii, Izd-vo MGU, M., 1998, 160 pp. | MR
[2] Filatov O. P., “Ob otsenkakh opornykh funktsii usrednennykh differentsialnykh vklyuchenii”, Matematicheskie zametki, 50:3 (1991), 135–142 | MR
[3] Filatov O. P., “Vychislenie predelov maksimalnykh srednikh”, Matematicheskie zametki, 59:5 (1996), 759–767 | DOI | MR | Zbl
[4] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989, 472 pp. | MR