The usage of recursive functions for proving probabilistic inequalities
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 78-86
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, the method of proving probabilistic inequalities based on the usage of recursive functions is considered. As an illustration, we give a solution to the problem which naturally arises in connection with Rosenthal's inequality intensification.
Keywords:
Rosenthal inequality, independent functions.
@article{VSGU_2010_6_a8,
author = {K. E. Tikhomirov},
title = {The usage of recursive functions for proving probabilistic inequalities},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {78--86},
year = {2010},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2010_6_a8/}
}
K. E. Tikhomirov. The usage of recursive functions for proving probabilistic inequalities. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 78-86. http://geodesic.mathdoc.fr/item/VSGU_2010_6_a8/
[1] Johnson W., Schechtman G., “Sums of independent random variables in rearrangement invariant function spaces”, Ann. Probab., 17 (1989), 789–808 | DOI | MR | Zbl
[2] Rosenthal H. P., “On the subspaces of $L_p\ (p>2)$ spanned by sequences of independent random variables”, Israel J. Math., 8 (1970), 273–303 | DOI | MR | Zbl
[3] Montgomery-Smith S., “Rearrangement invariant norms of symmetric sequence norms of independent sequences of random variables”, Israel J. Math., 131 (2002), 51–60 | DOI | MR | Zbl
[4] Shiryaev A. N., Veroyatnost, v 2 kn., 3-e izd., MTsNMO, M., 2004