Algebras of paths on complete graphs
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 48-53
Cet article a éte moissonné depuis la source Math-Net.Ru
The algebras of paths on connected graphs are defined. Their properties are described and central elements of division rings for the case when the graph is a complete, indirected loop-free, are also described.
Keywords:
quantum algebra, graph, algebra of twisted polynomials.
@article{VSGU_2010_6_a5,
author = {V. G. Mosin},
title = {Algebras of paths on complete graphs},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {48--53},
year = {2010},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2010_6_a5/}
}
V. G. Mosin. Algebras of paths on complete graphs. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 48-53. http://geodesic.mathdoc.fr/item/VSGU_2010_6_a5/
[1] Panov A. N., “Tela skruchennykh ratsionalnykh funktsii i telo ratsionalnykh funktsii na $GL_q(n, K)$”, Algebra i analiz, 7:1 (1995), 153–167 | MR
[2] Mosin V. G., Panov A. N., “Tela chastnykh i tsentralnye elementy mnogoparametricheskikh kvantovanii”, Matem. sb., 187:6 (1996), 53–72 | DOI | MR | Zbl
[3] Mosin V. G., “Primitivnye idealy v algebre regulyarnykh funktsii na kvantovykh $(m\times n)$-matritsakh”, Matem. zametki, 71:2 (2002), 318–320 | DOI | MR | Zbl