Integral manifolds for slow-fast systems and the stability loss delay
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 93-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the study of the slow-fast systems under the condition that the spectrum of the linear part of the fast subsystem consists of the pair of complex conjugate eigenvalues that cross the imaginary axis from left to right. It is proved that if we introduce the additional function into the system then the modified system has the slow integral manifold with change of stability.
Keywords: integral manifolds, change of stability, stability loss delay, multiscale systems.
@article{VSGU_2010_6_a10,
     author = {E. V. Schetinina},
     title = {Integral manifolds for slow-fast systems and the stability loss delay},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {93--105},
     year = {2010},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2010_6_a10/}
}
TY  - JOUR
AU  - E. V. Schetinina
TI  - Integral manifolds for slow-fast systems and the stability loss delay
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2010
SP  - 93
EP  - 105
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2010_6_a10/
LA  - ru
ID  - VSGU_2010_6_a10
ER  - 
%0 Journal Article
%A E. V. Schetinina
%T Integral manifolds for slow-fast systems and the stability loss delay
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2010
%P 93-105
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2010_6_a10/
%G ru
%F VSGU_2010_6_a10
E. V. Schetinina. Integral manifolds for slow-fast systems and the stability loss delay. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 93-105. http://geodesic.mathdoc.fr/item/VSGU_2010_6_a10/

[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 504 pp. | MR

[2] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973, 512 pp. | MR

[3] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988, 256 pp. | MR | Zbl

[4] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985, 376 pp. | MR

[5] Shishkova M. A., “Rassmotrenie odnoi sistemy differentsialnykh uravnenii s malym parametrom pri vysshikh proizvodnykh”, Dokl. AN SSSR, 209:3 (1973), 576–579 | Zbl

[6] Neishtadt A. I., “O zatyagivanii poteri ustoichivosti pri dinamicheskikh bifurkatsiyakh”, Differentsialnye uravneniya, 23:12 (1987), 2060–2067 ; 24:2 (1988), 226–233 | MR | MR

[7] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975, 247 pp. | MR

[8] Shchepakina E., Sobolev V., “Integral manifolds, canards and black swans”, Nonlinear Anal., Theory Methods Appl., 44A:7 (2001), 897–908 | DOI | MR | Zbl

[9] Shchetinina E. V., “On existence of a bounded solution in a problem with a control parameter”, System Analysis and Control: Theory and Appl., 6:2 (2004), 94–102 | MR

[10] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 512 pp. | MR

[11] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970, 536 pp. | MR

[12] Ryzhik I. M., Gradshtein I. S., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1965, 1100 pp. | MR

[13] Perov A. I., Kibenko A. V., “Ob odnom obschem metode issledovaniya kraevykh zadach”, Izv. AN SSSR. Cer. Matematika, 30:2 (1966), 249–264 | MR | Zbl