The model of graviinertial system based on the princirle of D'Alamber interpretation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 8-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theoretical and mechanical substantiation of two-dimensional inertial navigation method is given. The results of numerical research of 2D graviinertial system are shown.
Keywords: inertial navigation, gravimetry, Newton meter, gyroscope, inverse problem, wavelet.
@article{VSGU_2010_6_a1,
     author = {A. S. Devyatisil'nyi and K. A. Chislov},
     title = {The model of graviinertial system based on the princirle of {D'Alamber} interpretation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {8--13},
     year = {2010},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2010_6_a1/}
}
TY  - JOUR
AU  - A. S. Devyatisil'nyi
AU  - K. A. Chislov
TI  - The model of graviinertial system based on the princirle of D'Alamber interpretation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2010
SP  - 8
EP  - 13
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2010_6_a1/
LA  - ru
ID  - VSGU_2010_6_a1
ER  - 
%0 Journal Article
%A A. S. Devyatisil'nyi
%A K. A. Chislov
%T The model of graviinertial system based on the princirle of D'Alamber interpretation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2010
%P 8-13
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2010_6_a1/
%G ru
%F VSGU_2010_6_a1
A. S. Devyatisil'nyi; K. A. Chislov. The model of graviinertial system based on the princirle of D'Alamber interpretation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 8-13. http://geodesic.mathdoc.fr/item/VSGU_2010_6_a1/

[1] Devyatisilnyi A. S., Chislov K. A., “Ob inertsialnykh navigatsionnykh sistemakh, korrektiruemykh po radialnoi informatsii”, Vestnik SamGU. Estestvennonauchnaya seriya, 2008, no. 6, 83–89

[2] Ishlinskii A. Yu., Klassicheskaya mekhanika i sily inertsii, Nauka, M., 1987, 320 pp. | MR | Zbl

[3] Andreev V. D., Teoriya inertsialnoi navigatsii. Korrektiruemye sistemy., Nauka, M., 1967, 648 pp.

[4] Devyatisilnyi A. S., Chislov K. A., “Chislennoe modelirovanie zadachi korrektsii trekhkomponentnoi inertsialnoi navigatsionnoi sistemy po vysotnoi informatsii”, Izv. RAN. Teoriya i sistemy upravleniya, 2004, no. 5, 101–105

[5] Kalman R., Falb P., Arbib M., Ocherki po matematicheskoi teorii sistem, Mir, M., 1971, 400 pp. | MR | Zbl

[6] Osipov Yu. S., Kryazhemskii A. V., “Zadachi dinamicheskogo obrascheniya”, Vestnik RAN, 76 (2006), 615–624

[7] Mallat S. G., “A theory for multiresolution signal decomposition: the wavelet representation”, IEEE Transaction on Pattern Analysis and Machine Intelligence, 11:7 (1989), 674–693 | DOI | Zbl

[8] Daubechies I., Ten lectures on wavelets, CBMS-NFS conference series in applied mathematics., 61, SIAMED, 1992, 388 pp. | MR | Zbl

[9] Devyatisilnyi A. S., Prudkoglyad N. A., “Modelirovanie astroinertsialnoi sistemy v usloviyakh stokhasticheskoi neopredelennosti”, Aviakosmicheskoe priborostroenie, 2007, no. 11, 39–44