@article{VSGU_2010_6_a1,
author = {A. S. Devyatisil'nyi and K. A. Chislov},
title = {The model of graviinertial system based on the princirle of {D'Alamber} interpretation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {8--13},
year = {2010},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2010_6_a1/}
}
TY - JOUR AU - A. S. Devyatisil'nyi AU - K. A. Chislov TI - The model of graviinertial system based on the princirle of D'Alamber interpretation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2010 SP - 8 EP - 13 IS - 6 UR - http://geodesic.mathdoc.fr/item/VSGU_2010_6_a1/ LA - ru ID - VSGU_2010_6_a1 ER -
%0 Journal Article %A A. S. Devyatisil'nyi %A K. A. Chislov %T The model of graviinertial system based on the princirle of D'Alamber interpretation %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2010 %P 8-13 %N 6 %U http://geodesic.mathdoc.fr/item/VSGU_2010_6_a1/ %G ru %F VSGU_2010_6_a1
A. S. Devyatisil'nyi; K. A. Chislov. The model of graviinertial system based on the princirle of D'Alamber interpretation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2010), pp. 8-13. http://geodesic.mathdoc.fr/item/VSGU_2010_6_a1/
[1] Devyatisilnyi A. S., Chislov K. A., “Ob inertsialnykh navigatsionnykh sistemakh, korrektiruemykh po radialnoi informatsii”, Vestnik SamGU. Estestvennonauchnaya seriya, 2008, no. 6, 83–89
[2] Ishlinskii A. Yu., Klassicheskaya mekhanika i sily inertsii, Nauka, M., 1987, 320 pp. | MR | Zbl
[3] Andreev V. D., Teoriya inertsialnoi navigatsii. Korrektiruemye sistemy., Nauka, M., 1967, 648 pp.
[4] Devyatisilnyi A. S., Chislov K. A., “Chislennoe modelirovanie zadachi korrektsii trekhkomponentnoi inertsialnoi navigatsionnoi sistemy po vysotnoi informatsii”, Izv. RAN. Teoriya i sistemy upravleniya, 2004, no. 5, 101–105
[5] Kalman R., Falb P., Arbib M., Ocherki po matematicheskoi teorii sistem, Mir, M., 1971, 400 pp. | MR | Zbl
[6] Osipov Yu. S., Kryazhemskii A. V., “Zadachi dinamicheskogo obrascheniya”, Vestnik RAN, 76 (2006), 615–624
[7] Mallat S. G., “A theory for multiresolution signal decomposition: the wavelet representation”, IEEE Transaction on Pattern Analysis and Machine Intelligence, 11:7 (1989), 674–693 | DOI | Zbl
[8] Daubechies I., Ten lectures on wavelets, CBMS-NFS conference series in applied mathematics., 61, SIAMED, 1992, 388 pp. | MR | Zbl
[9] Devyatisilnyi A. S., Prudkoglyad N. A., “Modelirovanie astroinertsialnoi sistemy v usloviyakh stokhasticheskoi neopredelennosti”, Aviakosmicheskoe priborostroenie, 2007, no. 11, 39–44