Iterative method for approximate construction of slow integral manifolds
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2010), pp. 78-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the application of integral manifolds method for the investigation of singularly perturbed ordinary differential systems. When the method of integral manifolds is used to solve a specific problem, a central question is the calculation of the function in terms of the manifold described. The iterative method of construction of integral manifolds is proposed and the comparison of this method with others is also made.
Keywords: integral manifolds, iterative method, asymptotic expansion.
Mots-clés : singular perturbations
@article{VSGU_2010_4_a9,
     author = {E. A. Tropkina},
     title = {Iterative method for approximate construction of slow integral manifolds},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {78--88},
     year = {2010},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2010_4_a9/}
}
TY  - JOUR
AU  - E. A. Tropkina
TI  - Iterative method for approximate construction of slow integral manifolds
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2010
SP  - 78
EP  - 88
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2010_4_a9/
LA  - ru
ID  - VSGU_2010_4_a9
ER  - 
%0 Journal Article
%A E. A. Tropkina
%T Iterative method for approximate construction of slow integral manifolds
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2010
%P 78-88
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2010_4_a9/
%G ru
%F VSGU_2010_4_a9
E. A. Tropkina. Iterative method for approximate construction of slow integral manifolds. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2010), pp. 78-88. http://geodesic.mathdoc.fr/item/VSGU_2010_4_a9/

[1] Voropaeva N. V., Sobolev V. A., Geometricheskaya dekompozitsiya singulyarno vozmuschennykh sistem, Fizmatlit, M., 2009 | Zbl

[2] Goldshtein V. M., Sobolev V. A., Kachestvennyi analiz singulyarno vozmuschennykh sistem, In-t matematiki AN SSSR. Sib. otd-nie, Novosibirsk, 1988, 154 pp.

[3] Lykova O. B., Mitropolskii Yu. A., Integralnye mnogoobraziya v nelineinoi mekhanike, M., 1973 | MR

[4] Murray J. D., Mathematical Biology I. An Introduction, Springer Verlag, N. Y., 2001 | MR

[5] Sobolev V. A., Strygin V. V., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988 | MR

[6] Schneider K. R., Wilhelm T., “Model reduction by extended quasi-steady state assumption”, J. Math. Biology, 40 (2000), 443–450 | DOI | MR | Zbl