Adaptive numerical method on the basis of the system of ortogonal compact functions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2010), pp. 73-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article the new algorithm of construction of the system of orthogonal compact functions for the solution of Burgers equation by a finite element method is described. The result of designing on corresponding subspaces is the system of ordinary differential equations with a diagonal matrix.
Keywords: finite element method, orthogonal compact type functions, Streng–Fix condition.
@article{VSGU_2010_4_a8,
     author = {G. Yu. Severin},
     title = {Adaptive numerical method on the basis of the system of ortogonal compact functions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {73--77},
     year = {2010},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2010_4_a8/}
}
TY  - JOUR
AU  - G. Yu. Severin
TI  - Adaptive numerical method on the basis of the system of ortogonal compact functions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2010
SP  - 73
EP  - 77
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2010_4_a8/
LA  - ru
ID  - VSGU_2010_4_a8
ER  - 
%0 Journal Article
%A G. Yu. Severin
%T Adaptive numerical method on the basis of the system of ortogonal compact functions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2010
%P 73-77
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2010_4_a8/
%G ru
%F VSGU_2010_4_a8
G. Yu. Severin. Adaptive numerical method on the basis of the system of ortogonal compact functions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2010), pp. 73-77. http://geodesic.mathdoc.fr/item/VSGU_2010_4_a8/

[1] Blatov I. A., Strygin V. V., Elementy teorii splainov i metod konechnykh elementov dlya zadach s pogransloem, Izd-vo VGU, Voronezh., 1997, 406 pp.

[2] Dobeshi I., Desyat lektsii po veivletam, Izhevsk, 2001, 461 pp.

[3] Zakharov V. G., “Reshenie uravneniya Byurgersa s ispolzovaniem veivlet-bazisov”, Matematicheskoe modelirovanie sistem i protsessov, 1995, no. 3, 24–33

[4] Kattani K., Kudreiko A. A., Migranov N. G., “Garmonicheskoe veivlet-reshenie uravneniya tipa Kortevega-de-Friza”, Vestnik Chelyabinskogo gosudarstvennogo universiteta. Ser. Fizika, 8(146):4 (2009), 28–31

[5] Laevskii Yu. M., Metod konechnykh elementov, Izd-vo NGU, Novosibirsk, 1999, 165 pp.

[6] Ilin V. P., Metody i tekhnologii konechnykh elementov, Novosibirsk, 2007, 369 pp.

[7] Leontev V. L., Ortogonalnye finitnye funktsii i chislennye metody, UlGU, Ulyanovsk, 2003, 178 pp. | MR

[8] Agoshkov V. I., Marchuk G. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981, 416 pp. | MR | Zbl

[9] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979, 320 pp. | MR

[10] Novikov I. Ya., Protasov V. A., Skopina M. A., Teoriya vspleskov, Nauka, M., 2005, 612 pp. | MR | Zbl

[11] Rvachev V. A., Teoriya priblizhenii i atomarnye funktsii, Znanie, M., 1978, 64 pp.

[12] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977, 349 pp. | MR

[13] Ctechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR