Nonlocal problem with time-dependent Steklov's boundary conditions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2010), pp. 56-64

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, the solvability of boundary-value problem for hyperbolic equation with nonlocal conditions $$a_1(t)u_x(0,t)+a_2(t)u_x(1,t)+a_3(t)u(0,t)+a_4(t)u(1,t)=0,$$ $$b_1(t)u_x(0,t)+b_2(t)u_x(1,t)+b_3(t)u(0,t)+b_4(t)u(1,t)=0 $$ is proved. The proof is mainly based on a priori estimates and Galerkin procedure.
Keywords: hyperbolic equation, generalized solution.
Mots-clés : nonlocal conditions
@article{VSGU_2010_4_a6,
     author = {L. S. Pulkina and A. V. Dyuzheva},
     title = {Nonlocal problem with time-dependent {Steklov's} boundary conditions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {56--64},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2010_4_a6/}
}
TY  - JOUR
AU  - L. S. Pulkina
AU  - A. V. Dyuzheva
TI  - Nonlocal problem with time-dependent Steklov's boundary conditions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2010
SP  - 56
EP  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2010_4_a6/
LA  - ru
ID  - VSGU_2010_4_a6
ER  - 
%0 Journal Article
%A L. S. Pulkina
%A A. V. Dyuzheva
%T Nonlocal problem with time-dependent Steklov's boundary conditions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2010
%P 56-64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2010_4_a6/
%G ru
%F VSGU_2010_4_a6
L. S. Pulkina; A. V. Dyuzheva. Nonlocal problem with time-dependent Steklov's boundary conditions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2010), pp. 56-64. http://geodesic.mathdoc.fr/item/VSGU_2010_4_a6/