Nonlocal problem with time-dependent Steklov's boundary conditions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2010), pp. 56-64
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article, the solvability of boundary-value problem for hyperbolic equation with nonlocal conditions
$$a_1(t)u_x(0,t)+a_2(t)u_x(1,t)+a_3(t)u(0,t)+a_4(t)u(1,t)=0,$$
$$b_1(t)u_x(0,t)+b_2(t)u_x(1,t)+b_3(t)u(0,t)+b_4(t)u(1,t)=0 $$
is proved. The proof is mainly based on a priori estimates and Galerkin procedure.
Keywords:
hyperbolic equation, generalized solution.
Mots-clés : nonlocal conditions
Mots-clés : nonlocal conditions
@article{VSGU_2010_4_a6,
author = {L. S. Pulkina and A. V. Dyuzheva},
title = {Nonlocal problem with time-dependent {Steklov's} boundary conditions},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {56--64},
publisher = {mathdoc},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2010_4_a6/}
}
TY - JOUR AU - L. S. Pulkina AU - A. V. Dyuzheva TI - Nonlocal problem with time-dependent Steklov's boundary conditions JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2010 SP - 56 EP - 64 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2010_4_a6/ LA - ru ID - VSGU_2010_4_a6 ER -
L. S. Pulkina; A. V. Dyuzheva. Nonlocal problem with time-dependent Steklov's boundary conditions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2010), pp. 56-64. http://geodesic.mathdoc.fr/item/VSGU_2010_4_a6/