Modelling shock waves in composite materials
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 105-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An accurate extrapolation of high-pressure shock Hugoniot states to other thermodynamics states for shocked Carbon Fibre Composite (CFC) materials is presented. The proposed anisotropic equation of state represents mathematical and physical generalization of the Mie-Grüneisen equation of state for isotropic material and reduces to this equation in the limit of isotropy. Using an anisotropic nonlinear continuum framework and generalized decomposition of a stress tensor, the shock waves propagation in CFC materials is examined. A numerical calculation showed that Hugoniot Stress Levels (HELs) agree with the experimental data for selected CFC material. The results are presented and discussed, and future studies are outlined.
Mots-clés : composite structures, stress decomposition
Keywords: shock wave, modelling, equation of state, impact.
@article{VSGU_2010_2_a9,
     author = {A. A. Lukyanov},
     title = {Modelling shock waves in composite materials},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {105--120},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2010_2_a9/}
}
TY  - JOUR
AU  - A. A. Lukyanov
TI  - Modelling shock waves in composite materials
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2010
SP  - 105
EP  - 120
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2010_2_a9/
LA  - ru
ID  - VSGU_2010_2_a9
ER  - 
%0 Journal Article
%A A. A. Lukyanov
%T Modelling shock waves in composite materials
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2010
%P 105-120
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2010_2_a9/
%G ru
%F VSGU_2010_2_a9
A. A. Lukyanov. Modelling shock waves in composite materials. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 105-120. http://geodesic.mathdoc.fr/item/VSGU_2010_2_a9/

[1] Barker L. M., Hollenbach R. E., “Laser interferometer for measuring high velocities of any reflecting surface”, J. Appl. Phys., 1972, no. 43(11), 4669–4675

[2] Kanel G. I., “Some new data on deformation and fracture of solids under shock-wave loading”, J. Mech. Phys. Solids, 1998, no. 46(10), 1869–1886 | Zbl

[3] G. I. Kanel et al., “Possible applications of the ion beams technique for investigations in the field of equation of state”, Nucl. Instr. and Meth. in Phys. Res. A, 1998, no. 415(3), 509–516

[4] Bourne N. K., Stevens G. S., “A gas gun for plane and shear loading of inert and explosive targets”, Rev. Sci. Instrum., 2001, no. 72(4), 2214–2218

[5] Bourne N. K., “A 50 mm bore gas gun for dynamic loading of materials and structures”, Meas. Sci. and Technol., 2003, no. 14, 273–278

[6] Davison L., Graham R. A., “Shock Compression of solids”, Phys. Rep., 1979, no. 55, 255–379

[7] A. V. Bushman et al., Intense dynamic Loading of Condensed Matter, D. C. Taylor and Francis, Washington, 1993; Russ. original, OIKhF, Chernogolovka, 1988, 297 pp.

[8] Meyers M. A., Dynamic Behavior of Materials, Wiley. Inc., New York, 1994, 668 pp. | Zbl

[9] Steinberg D. J., Equation of State and Strength Properties of Selected Materials, Report No UCRL-MA-106439, Lawrence Livermore National Laboratory, Livermore, CA, 1991

[10] D. P. Dandekar et al., “Shock response of a glass-fiber-reinforced polymer composite”, Compos. Struct., 2003, no. 61, 51–59

[11] Munson D. E., May R. P., “Dynamically determined high-pressure compressibilities of three epoxy resin systems”, J. Appl. Phys., 1972, no. 43(3), 962–971

[12] J. C. F. Millett et al., “The behaviour of an epoxy resin under one-dimensional shock loading”, J. Appl. Phys., 2002, no. 92(11), 6590–6594

[13] A. Z. Zhuk et al., “Glass-epoxy composite behaviour under shock loading”, J. Phys. IV, 1994, no. 4, 403–407 | MR

[14] W. Riedel et al., “Equation of state properties of modern composite materials: modelling shock, release and spallation”, Shock compression of condensed matter – 2003, American Institute of Physics, Melville, N.Y., 2004, 701–704

[15] Zaretsky E., de Botton G., Perl M., “The response of a glass fibers reinforced epoxy composite to an impact loading”, Int. J. Solids Struct., 2004, no. 41, 569–584

[16] G. I. Kanel et al., “Computer simulation of the heterogeneous materials response to the impact loading”, Int. J. Impact Engineering, 1995, no. 17, 455–464

[17] J. K. Chen et al., “High-velocity Impact of Graphite/Epoxy Composite Laminates”, Comp. Sci. and Techn., 1997, no. 57, 1268–1379

[18] C. J. Hayhurst et al., “Development of material models for Nextel and Kevlar-epoxy for high pressures and strain rates”, Int. J. Impact Engineering, 1999, no. 23(1), 365–376

[19] S. A. Bordzilovsky et al., “Shock response of a unidirectional composite at various orientations of fibers”, Shock compression of condensed matter-1997, AIP Press, Melville, N.Y., 1998, 545–548

[20] P.-L. Hereil et al., “Shock behaviour of 3D carbon-carbon composite”, J. Phys. IV, 1997, no. 7, 529–534

[21] J. C. F. Millett et al., “The effect of orientation on the shock response of a carbon fibre-epoxy composite”, Composites Science and Technology, 2007, no. 67(15–16), 3253–3260

[22] Kiselev A. B., Lukyanov A. B., “Mathematical Modeling of Dynamic Processes of Irreversible Deforming, Micro- and Macrofracture of Solids and Structures”, Int. J. Forming Processes, 2002, no. 5, 359–362

[23] C. E. Anderson et al., “A constitutive formulation for anisotropic materials suitable for wave propagation computer program-II”, Comput. Mech., 1994, no. 15, 201–223 | Zbl

[24] Lukyanov A. A., “Thermodynamically consistent anisotropic plasticity model”, ASME Proceeding IPC, ASME, 2006

[25] Lukyanov A. A., “Constitutive behaviour of anisotropic materials under shock loading”, Int. J. Plasticity, 2008, no. 24(1), 140–167 | Zbl

[26] Lukyanov A. A., “An equation of state for anisotropic materials under shock loading”, Eur. J. Physics B: Condesed Matter and Complex System, 2008, no. 64(2), 159–164

[27] Lukyanov A. A., “Thermodynamically Consistent Anisotropic Plasticity Model”, J. Pressure Vessel Technology, 2008, no. 130, 021701

[28] Lukyanov A. A., Pen'kov V. B., “State equation for anisotropic materials under shock loading”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008, no. 2(61), 173–182

[29] Lukyanov A. A., Pen'kov V. B., “A mathematically correct model of incompressible anisotropic associated plasticity”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2007, no. 4(54), 280–289 | MR

[30] Wallace D. C., Thermodynamics of Crystals, Dover Publications Inc., Mineola, 2003, 512 pp.

[31] Johnson J. N., “Shock Propagation Produced by Planar Impact in Linearly”, J. Appl. Phys., 1971, no. 42(13), 5522–5530

[32] Johnson J. N., “Calculation of Plane-Wave Propagation in Anisotropic Elastic-Plastic Solids”, J. Appl. Phys., 1972, no. 43(5), 2074–2082

[33] Winey J. M., Gupta Y. M., “Nonlinear anisotropic description for shocked single crystals: Thermoelastic response and pure mode wave propagation”, J. Appl. Phys., 2004, no. 96(4), 1993–1999

[34] Hallquist J. O., LS-DYNA Theoretical Manual, Livermore Software Technology Corporation, Livermore, 1998, 498 pp.