Keywords: Triangular group, Adjoint representation.
@article{VSGU_2010_2_a6,
author = {V. V. Sevost'yanova},
title = {The invariant algebra of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {72--83},
year = {2010},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2010_2_a6/}
}
TY - JOUR AU - V. V. Sevost'yanova TI - The invariant algebra of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2010 SP - 72 EP - 83 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2010_2_a6/ LA - ru ID - VSGU_2010_2_a6 ER -
%0 Journal Article %A V. V. Sevost'yanova %T The invariant algebra of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2010 %P 72-83 %N 2 %U http://geodesic.mathdoc.fr/item/VSGU_2010_2_a6/ %G ru %F VSGU_2010_2_a6
V. V. Sevost'yanova. The invariant algebra of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 72-83. http://geodesic.mathdoc.fr/item/VSGU_2010_2_a6/
[1] Richardson R. W., “Conjugacy classes in parabolic subgroups of semisimple algebraic groups”, Bull. London Math. Soc., 6 (1974), 21–24 | MR | Zbl
[2] Brion M., “Representations exceptionnelles des groups semi-simple”, Ann. Scient. Ec. Norm. Sup., 18 (1985), 345–387 | MR | Zbl
[3] Goto M., Grosskhans F., Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl
[4] Panov A. N., Sevostyanova V. V., Regulyarnye N-orbity v nilradikale parabolicheskoi podalgebry, trudy mezhdunarodnoi konferentsii po algebre i teorii chisel, posvyaschennoi 80 letiyu V. E. Voskresenskogo, Samarskii universitet, Samara, 2007
[5] Sevostyanova V. V., “Pole invariantov prisoedinennogo deistviya unitreugolnoi gruppy v nilradikale parabolicheskoi podalgebry”, Zap. nauch. semin. POMI (to appear)