The invariant algebra of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 72-83
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper the invariant algebra of the adjoint action of the triangular group in the nilradical of a parabolic subalgebra is studied. We formulate a conjecture on the structure of the invariant algebra. The conjecture is proved for parabolic subalgebras of a special case.
Mots-clés : Invariant algebra, Parabolic subalgebras
Keywords: Triangular group, Adjoint representation.
@article{VSGU_2010_2_a6,
     author = {V. V. Sevost'yanova},
     title = {The invariant algebra of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {72--83},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2010_2_a6/}
}
TY  - JOUR
AU  - V. V. Sevost'yanova
TI  - The invariant algebra of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2010
SP  - 72
EP  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2010_2_a6/
LA  - ru
ID  - VSGU_2010_2_a6
ER  - 
%0 Journal Article
%A V. V. Sevost'yanova
%T The invariant algebra of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2010
%P 72-83
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2010_2_a6/
%G ru
%F VSGU_2010_2_a6
V. V. Sevost'yanova. The invariant algebra of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 72-83. http://geodesic.mathdoc.fr/item/VSGU_2010_2_a6/

[1] Richardson R. W., “Conjugacy classes in parabolic subgroups of semisimple algebraic groups”, Bull. London Math. Soc., 6 (1974), 21–24 | MR | Zbl

[2] Brion M., “Representations exceptionnelles des groups semi-simple”, Ann. Scient. Ec. Norm. Sup., 18 (1985), 345–387 | MR | Zbl

[3] Goto M., Grosskhans F., Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl

[4] Panov A. N., Sevostyanova V. V., Regulyarnye N-orbity v nilradikale parabolicheskoi podalgebry, trudy mezhdunarodnoi konferentsii po algebre i teorii chisel, posvyaschennoi 80 letiyu V. E. Voskresenskogo, Samarskii universitet, Samara, 2007

[5] Sevostyanova V. V., “Pole invariantov prisoedinennogo deistviya unitreugolnoi gruppy v nilradikale parabolicheskoi podalgebry”, Zap. nauch. semin. POMI (to appear)