On dyadic multiwavelet transform
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 57-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper continuous and dyadic multiwavelet transforms and dyadic multiwavelets are defined. The author considers admissibility condition. The theorem about signal reconstruction from its multiwavelet decomposition and analogs of other theorems from the theory of wavelets are proved.
Keywords: multiwavelet, multiscaling function, multiresolution analysis of multiplicity $r$, continuous multiwavelet transformation
Mots-clés : dyadic multiwavelet transformation.
@article{VSGU_2010_2_a5,
     author = {P. G. Severov},
     title = {On dyadic multiwavelet transform},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {57--71},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2010_2_a5/}
}
TY  - JOUR
AU  - P. G. Severov
TI  - On dyadic multiwavelet transform
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2010
SP  - 57
EP  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2010_2_a5/
LA  - ru
ID  - VSGU_2010_2_a5
ER  - 
%0 Journal Article
%A P. G. Severov
%T On dyadic multiwavelet transform
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2010
%P 57-71
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2010_2_a5/
%G ru
%F VSGU_2010_2_a5
P. G. Severov. On dyadic multiwavelet transform. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 57-71. http://geodesic.mathdoc.fr/item/VSGU_2010_2_a5/

[1] Cotronei M., Montefusco L., Puccio L., “Multiwavelet Analysis and Signal Processing”, IEEE Trans. on Circuits and Systems II, 45 (1998), 970–987 | Zbl

[2] Keinert F., Wavelet and Multiwavelet, Chapman and Hall/CRC, London, 2004 | MR | Zbl

[3] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005, 671 pp.