Vector transformation operators for harmonic functions in a~ball
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 48-56

Voir la notice de l'article provenant de la source Math-Net.Ru

The operator $L_\Gamma $ and the inverse operator $L_\Gamma ^{-1} $ are investigated; they are used at finding transformation operators and at the solution of concrete boundary value problems in homogeneous spherically symmetric areas. The operational solution method of vector boundary value problems is offered. In particular, the solution of the third boundary value problem in ball for the Laplace equation is found.
Keywords: transformation operator, vector boundary value problems, harmonic functions.
@article{VSGU_2010_2_a4,
     author = {Yu. A. Parfenova},
     title = {Vector transformation operators for harmonic functions in a~ball},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {48--56},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2010_2_a4/}
}
TY  - JOUR
AU  - Yu. A. Parfenova
TI  - Vector transformation operators for harmonic functions in a~ball
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2010
SP  - 48
EP  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2010_2_a4/
LA  - ru
ID  - VSGU_2010_2_a4
ER  - 
%0 Journal Article
%A Yu. A. Parfenova
%T Vector transformation operators for harmonic functions in a~ball
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2010
%P 48-56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2010_2_a4/
%G ru
%F VSGU_2010_2_a4
Yu. A. Parfenova. Vector transformation operators for harmonic functions in a~ball. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 48-56. http://geodesic.mathdoc.fr/item/VSGU_2010_2_a4/