Pfaffian differential equations for conditional quantiles of multidimentional probability distributions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 32-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Our work is devoted to the study of Pfaff differential equations, which are constructed on the basis of two-dimensional conditional quantiles. However for some multidimentional probability distributions (distributions having the property of conditional quantiles reproducibility) solutions of these equations are the conditional quantiles of significantly higher dimensions. This fact allows us (for distributions of the pointed class) to reduce significantly the number of observations needed to build statistical estimations for multidimentional conditional medians and conditional quantiles.
Keywords: multidimentional probability distributions, reproducibility of conditional quantiles, completely integrable Pfaff`s differential equations.
@article{VSGU_2010_2_a3,
     author = {I. S. Orlova and S. Ya. Shatskikh},
     title = {Pfaffian differential equations for conditional quantiles of multidimentional probability distributions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {32--47},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2010_2_a3/}
}
TY  - JOUR
AU  - I. S. Orlova
AU  - S. Ya. Shatskikh
TI  - Pfaffian differential equations for conditional quantiles of multidimentional probability distributions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2010
SP  - 32
EP  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2010_2_a3/
LA  - ru
ID  - VSGU_2010_2_a3
ER  - 
%0 Journal Article
%A I. S. Orlova
%A S. Ya. Shatskikh
%T Pfaffian differential equations for conditional quantiles of multidimentional probability distributions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2010
%P 32-47
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2010_2_a3/
%G ru
%F VSGU_2010_2_a3
I. S. Orlova; S. Ya. Shatskikh. Pfaffian differential equations for conditional quantiles of multidimentional probability distributions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 32-47. http://geodesic.mathdoc.fr/item/VSGU_2010_2_a3/

[1] Adler R. J., Feldman R. E., Taqqu M. S.(eds.), A practical guide to heavy tailes: statistical tehniques and application, Birkhauser, Boston, 1998, 533 pp. | MR

[2] Poiraud-Casanova S., Thomas-Agan Ch., “Quantiles conditionnels”, Journal de la Société Française de Statistiques, 139:4 (1998), 31–41

[3] Anderson T. W., “Nonnormal multivariate distributions: inference based on ellipticaly contoured distributions”, Multivariate Analysis, Futur Directions, ed. C. R. Rao, Elsevier Science Publishers, Amsterdam, 1993, 1400–1422 | MR

[4] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, MIR, M., 1971, 392 pp. | MR | Zbl

[5] Komlev A. N., Shatskikh S. Ya., “Uslovnye raspredeleniya veroyatnostei kak preobrazovaniya nezavisimosti sluchainykh velichin”, Vestnik SamGU, 2007, no. 6(56), 204–222 | MR | Zbl

[6] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., “Osnovnye idei i ponyatiya differentsialnoi geometrii”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 28, VINITI, M., 1988, 297

[7] Godbiion K., Differentsialnaya geometriya i analiticheskaya mekhanika, Mir, M., 1973, 188

[8] Uilks S., Matematicheskaya statistika, Nauka, M., 1967, 632 | MR

[9] Johnson N. L., Kotz S., Balakrishnan N., Continuous multivariate distribution, v. 1, 2 ed., Wiley, N. Y., 2000, 722 | MR | Zbl

[10] Shatskikh S. Ya., “Neobkhodimoe uslovie vosproizvodimosti uslovnykh kvantilei mnogomernykh veroyatnostnykh raspredelenii”, Izv. RAEN. Cer. MMMIU, 4:4 (2000), 67–72

[11] Shatskikh S. Ya., “Ob odnom variante preobrazovaniya nezavisimosti”, Mera i integral, Samarskii universitet, Samara, 1995, 99–112

[12] Stepanov V. V., Kurs differentsialnykh uravnenii, 8-e izd., Fizmatgiz, M., 1959, 472