Linear regressions based on qsrr models for the prediction of chromatographic retention of some five-membered nitrogen-containing heterocycles
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 145-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work deals with twenty substances composed of five-membered nitrogen-containing heterocycles. The relationships between the chromatographic retention factor $(k)$ and those physicochemical and topological properties which are relevant in quantitative structure-retention relationship (QSRR) studies, such as the polarizability ($\alpha $), molar refractivity (MR), lipophilicity ($log\, P$), dipole moment ($\mu$), molecular surface area ($S_M$), molecular connectivity indexes (${}^0 \chi \sim {}^5\chi$), Wiener index ($W$), Kier flexibility index ($\phi$), and Harary index ($H$) were investigated. The accuracy of the simple linear regressions between the chromatographic retention (CR) and some descriptors for all of the compounds was satisfactory. The QSRR models of these compounds could be predicted with a multiple linear regression (MLR) equations having the statistical index, $r^2 = 1.0$. This work demonstrated the successful application of the MLR approaches through the development of accurate predictive equations for $k$ in liquid chromatography.
Keywords: QSRR, five-membered nitrogen-containing heterocycles, retention factor, correlation.
@article{VSGU_2010_2_a13,
     author = {A. V. Bulanova and Yu. L. Polyakova},
     title = {Linear regressions based on qsrr models for the prediction of chromatographic retention of some five-membered nitrogen-containing heterocycles},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {145--158},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2010_2_a13/}
}
TY  - JOUR
AU  - A. V. Bulanova
AU  - Yu. L. Polyakova
TI  - Linear regressions based on qsrr models for the prediction of chromatographic retention of some five-membered nitrogen-containing heterocycles
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2010
SP  - 145
EP  - 158
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2010_2_a13/
LA  - ru
ID  - VSGU_2010_2_a13
ER  - 
%0 Journal Article
%A A. V. Bulanova
%A Yu. L. Polyakova
%T Linear regressions based on qsrr models for the prediction of chromatographic retention of some five-membered nitrogen-containing heterocycles
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2010
%P 145-158
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2010_2_a13/
%G ru
%F VSGU_2010_2_a13
A. V. Bulanova; Yu. L. Polyakova. Linear regressions based on qsrr models for the prediction of chromatographic retention of some five-membered nitrogen-containing heterocycles. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 145-158. http://geodesic.mathdoc.fr/item/VSGU_2010_2_a13/

[1] Wiener H., “Structural Determination of Paraffin Boiling Points”, J. Am. Chem. Soc., 69 (1947), 17–20

[2] Kaliszan R., Structure and Retention in Chromatography – A Chemometric Approach, Harwood–Amsterdam, 1997, 211 pp.

[3] Kaliszan R. J., “Quantitative structure-retention relationships applied to reversed-phase high-performance liquid chromatography”, J. Chromatogr. A, 656 (1993), 417–435

[4] Polyakova Y., Row K., “Quantitative Structure-Retention Relationships Applied to Reversed-Phase High-Performance Liquid Chromatography”, Med. Chem. Res., 2006, no. 14(8/9), 488–522

[5] Kaliszan R., Quantitative Structure-Chromatographic Retention Relationships, Wiley, New York, 1987, 437 pp.

[6] R. Kaliszan et al., “Prediction of high-performance liquid chromatography retention of peptides with the use of quantitative structure-retention relationships”, Proteomics, 2005, no. 5(2), 409–415

[7] Lee S., Polyakova Y., Row K., “Evaluation of Predictive Retention Factors for Phenolic Compounds with QSPR Equations”, J. Liq. Chromatogr. Related Technol., 2004, no. 4(27), 629–639

[8] J. Dai et al., “Retention of substituted indole compounds on RP-HPLC: correlation with molecular connectivity indices and quantum chemical”, Chromatogr. Related Technol., 1999, no. 22(15), 2271–2282

[9] Hinze W. L., Weber S. G., “Why the Relationship between the Logarithm of k and Homologue Number in Micellar Chromatography Is Not Linear”, Anal. Chem., 1991, no. 63, 1808–1811

[10] Yamagami C., Oguda T., Takao N., “Relationship between capacity factors and octanol-water partition coefficients for monosubstituted pyrazines and the related pyridines”, J. Chromatogr. A, 1990, no. 514, 123–136

[11] D. J. Minick et al., “A comprehensive method for determining hydrophobicity constants by reversed-phase high-performance liquid chromatography”, J. Med. Chem., 1988, no. 31, 1923–1933

[12] Braumann T., “Determination of hydrophobic parameters by reversed-phase liquid chromatography: Theory, experimental techniques, and application in studies on quantitative structure-activity relationships”, J. Chromatogr. A, 1986, no. 373, 191–225

[13] Yamagami C., Fujita T., “Hydrophobicity parameter of heteroaromatic compounds derived from various partitioning systems”, Classical and Three-dimensional QSAR in Agro-chemistry, ACS Symposium Series 606, eds. Hansch C., Fujita T., American Chemical Society, Washington, 1995, 36–47

[14] Zheng J., Polyakova Y., Row K., “Prediction of Chromatographic Retention of Nucleic Acids Based on QSPR Model”, Chromatographia, 2006, no. 64, 129–137

[15] K. Egorova et al., “Relationships “biological activity-physicochemical property” for imidazolide and triazolide sulfuric acids”, Samara State University Bulletin, Special Edition (Natural Science); Вестник Самарского государственного университета, 2002, Специальный выпуск, 124–131

[16] Townsend L. B., “Imidazole nucleosides and nucleotides”, Chem. Rev., 1967, no. 67, 533–563

[17] A. Kleeman et al., Pharmaceutical Substances, 3rd ed., New York–Stuttgart, 1999 | Zbl

[18] M. J. S. Dewar et al., “AM1: A new general purpose. Quantum mechanical model”, J. Am. Chem. Soc., 1985, no. 107, 3902–3909