Ablation of the semi-spaces, caused by teplov blow
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 121-128
Cet article a éte moissonné depuis la source Math-Net.Ru
The three-dimensional ablation problem for semi-space on the border of which the temperature is set is considered. It is supposed that heat extends with final speed. The decision is represented in the form of a beam number. The arrangement of ablation fronts in the various moments of time are illustratec by schedules.
Mots-clés :
ablation, phase transition
Keywords: enertia of a thermal stream, a heatstroke, beam number, intensity of rupture, absolute derivative, kinematic and geometrical conditions of compatibility.
Keywords: enertia of a thermal stream, a heatstroke, beam number, intensity of rupture, absolute derivative, kinematic and geometrical conditions of compatibility.
@article{VSGU_2010_2_a10,
author = {A. G. Shatalov},
title = {Ablation of the semi-spaces, caused by teplov blow},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {121--128},
year = {2010},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2010_2_a10/}
}
A. G. Shatalov. Ablation of the semi-spaces, caused by teplov blow. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 121-128. http://geodesic.mathdoc.fr/item/VSGU_2010_2_a10/
[1] Kozdoba L. A., Metody resheniya nelineinykh zadach teploprovodnosti, Nauka, M., 1975, 228 pp. | Zbl
[2] Lykov A. V., Teoriya teploprovodnosti, Vysshaya shkola, M., 1967, 599 pp. | Zbl
[3] Carslaw H. S., Jager J. C., Conduction of heat in solids, At the Clarendon Press, Oxford, 1959
[4] Bykovtsev G. I., Babicheva L. A., Verveiko N. D., “Luchevoi metod resheniya dinamicheskikh zadach v uprugovyazkoplasticheskikh sredakh”, PMM, 37:1 (1973), 145–155 | Zbl
[5] Shatalov A. G., “Luchevoi metod resheniya zadachi ablyatsii”, IFZh, 76:4 (2003), 25–30
[6] Mc Connel A. J., Application of Tensor Analysis, Dover, New York, 1957 | MR
[7] Bykovtsev G. I., Ivlev D. D., Teoriya plastichnosti, Dalnauka, Vladivostok, 1998, 527 pp.