Positive solution of two-point boundary problem for nonlinear ODE of the fourth order and numerical method of its construction
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 5-12
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper the existence and uniqueness of the positive solution for one class of nonlinear differential equations of the fourth order is proved. The numerical noniteration method to its finding is also suggested.
Mots-clés : existence, positive solution.
Keywords: uniqueness, nonlinear differential equation, boundary problem
@article{VSGU_2010_2_a0,
     author = {E. I. Abduragimov},
     title = {Positive solution of two-point boundary problem for nonlinear {ODE} of the fourth order and numerical method of its construction},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {5--12},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2010_2_a0/}
}
TY  - JOUR
AU  - E. I. Abduragimov
TI  - Positive solution of two-point boundary problem for nonlinear ODE of the fourth order and numerical method of its construction
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2010
SP  - 5
EP  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2010_2_a0/
LA  - ru
ID  - VSGU_2010_2_a0
ER  - 
%0 Journal Article
%A E. I. Abduragimov
%T Positive solution of two-point boundary problem for nonlinear ODE of the fourth order and numerical method of its construction
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2010
%P 5-12
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2010_2_a0/
%G ru
%F VSGU_2010_2_a0
E. I. Abduragimov. Positive solution of two-point boundary problem for nonlinear ODE of the fourth order and numerical method of its construction. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2010), pp. 5-12. http://geodesic.mathdoc.fr/item/VSGU_2010_2_a0/

[1] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, M., 1962, 394 pp. | MR

[2] Pokhozhaev S. I., “Ob odnoi zadache Ovsyannikova”, PMTF, 1989, no. 2, 5–10 | MR

[3] Pokhozhaev S. I., “Ob odnom konstruktivnom metode variatsionnogo ischisleniya”, DAN SSSR, 298:6 (1988), 1330–1333 | MR | Zbl

[4] Gidas B., Spruck J., “Global and local behavior of positive solutions of nonlineare elliptic equations”, Commutations on Pure and Applied Mathematics, 4 (1982), 525–598 | MR

[5] Kuo-Shung Cheng, Jenn-Tsann Lin, “On the elliptic equations $\Delta u=K(x)u^{\alpha}$ and $\Delta u=K(x)\exp^{2u}$”, Transactions of American mathematical society, 304:2 (1987), 633–668 | MR

[6] Galakhov E. I., “Polozhitelnye resheniya kvazilineinogo ellipticheskogo uravneniya”, Matematicheskie zametki, 78:2 (2005), 202–211 | MR | Zbl

[7] Gaponenko Yu. L., “O polozhitelnykh resheniyakh nelineinykh kraevykh zadach”, Vestnik Moskovskogo universiteta. Ser. 15. Vychislitelnaya matematika i kibernetika, 1983, no. 4, 8–12 | MR | Zbl

[8] Abduragimov E. I., “O edinstvennosti polozhitelnogo resheniya odnoi nelineinoi dvukhtochechnoi kraevoi zadachi”, Izv. vuzov. Matematika, 2002, no. 6, 3–6 | MR | Zbl

[9] Abduragimov E. I., “Polozhitelnoe reshenie dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo ODU chetvertogo poryadka”, Dagestanskii matematicheskii sbornik, 1 (2005), 7–12

[10] Abduragimov E. I., O polozhitelnom reshenii dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo ODU chetvertogo poryadka: materialy mezhdunar. konf., Makhachkala, 2005, 12–13

[11] Abduragimov E. I., “Polozhitelnoe reshenie dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo ODU chetvertogo poryadka”, Izv. vuzov. Matematika, 2006, no. 8, 3–6 | MR

[12] Na Ts., Vychislitelnye metody resheniya prikladnykh granichnykh zadach, Mir, M., 1982, 296 pp. | MR