On some nonlocal parabolic boundary value problems
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 94-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the question of solvability of the nonlocal boundary value problems for operator-differential equations of the first order with operators, which are generators of analytical semigroups. We establish existence and uniqueness of theorems for these boundary value problems under certain conditions on the data of the problem. The Sobolev-Besov spaces are employed. The results obtained are applied to the study of nonlocal boundary value problems for parabolic equations and systems.
Keywords: operator-differential equation, nonlocal boundary value problem, vector-valued Sobolev–Besov space
Mots-clés : parabolic equation.
@article{VSGU_2009_8_a9,
     author = {M. V. Uvarova},
     title = {On some nonlocal parabolic boundary value problems},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {94--108},
     year = {2009},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_8_a9/}
}
TY  - JOUR
AU  - M. V. Uvarova
TI  - On some nonlocal parabolic boundary value problems
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 94
EP  - 108
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_8_a9/
LA  - ru
ID  - VSGU_2009_8_a9
ER  - 
%0 Journal Article
%A M. V. Uvarova
%T On some nonlocal parabolic boundary value problems
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 94-108
%N 8
%U http://geodesic.mathdoc.fr/item/VSGU_2009_8_a9/
%G ru
%F VSGU_2009_8_a9
M. V. Uvarova. On some nonlocal parabolic boundary value problems. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 94-108. http://geodesic.mathdoc.fr/item/VSGU_2009_8_a9/

[1] Vlasii O. D., Ptashnik B. I., “Nelokalnaya kraevaya zadacha dlya lineinykh uravnenii s chastnymi proizvodnymi ne razreshennykh otnositelno starshei proizvodnoi po vremeni”, Ukrainskii matematicheskii zhurnal, 59:3 (2007), 370–381 | MR

[2] Kerefov A. A., “Nelokalnye granichnye zadachi dlya parabolicheskikh uravnenii”, Differents. uravneniya, 5:1 (1979), 74–78 | MR

[3] Kozhanov A. I., “Nelokalnaya po vremeni kraevaya zadacha dlya lineinykh parabolicheskikh uravnenii”, Sib. zhurn. industr. mat., 7:1(17) (2004), 51–60 | MR | Zbl

[4] Liberman G. M., “Nelokalnye zadachi dlya kvazilineinykh parabolicheskikh uravnenii”, Nelineinye zadachi matematicheskoi fiziki i smezhnye voprosy. Mezhdunarodnaya matematicheskaya seriya, 1 (2002), 233–254

[5] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980, 664 pp. | MR

[6] Shelukhin V. V., “Variatsionnyi printsip v nelokalnykh po vremeni zadachakh lineinykh evolyutsionnykh uravnenii”, Sib. mat. zhurn., 34:2 (1993), 191–207 | MR | Zbl

[7] Agarwal R. P., Bohner M., Shakhmurov V. B., “Maximal regular boundary value problems in Banach-valued weighted space”, Boundary value problems, 9:1 (2005), 9–42 | MR | Zbl

[8] Agarwal R. P., Bohner M., Shakhmurov V. B., “Linear and nonlinear nonlocal boundary value problems for differential-operator equations”, Appl. Anal., 85 (2006), 6–7 | MR | Zbl

[9] Byszewski L., “Theorems about the existence of solutions of a semilinear evolution nonlocal Cauchy problem”, J. Math. Appl. Anal., 162:2 (1991), 494–505 | DOI | MR | Zbl

[10] Chabrowski J., “On nonlocal problems for parabolic equations”, Nagoya Math. J., 93 (1984), 109–131 | MR | Zbl

[11] Prato G. da, Grisvard P., “Sommes d'operateurs lineaires et equations differentielles operationnelles”, J. Math. pures et appl., 54 (1975), 305–387 | MR | Zbl

[12] Denk R., Hieber M., Prüss J., “R-boundedness, Fourier multipliers, and problems of elliptic and parabolic type”, Memoirs of the AMS, 166:788 (2003), 114 pp. | DOI | MR

[13] Denk R., Krainer T., “R-boundedness, pseudodifferential operators, and maximal regularity for some classes of partial differential operators”, Manuscripta Math., 124:3 (2007), 319–342 | DOI | MR | Zbl

[14] Denk R., Hieber M., Prüss J., “Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z., 257:1 (2007), 93–224 | DOI | MR

[15] Gil M. I., “Nonlocal initial problem for nonlinear nonautonomous differential equations in a Banach space”, Ann. Differ. Equations, 20:2 (2004), 145–154 | MR | Zbl

[16] Grisvard P., “Commutative de deux functeurs d'interpolation et applications”, J. Math. pures et appliq., 45:2 (1966), 143–206 | MR | Zbl

[17] Grisvard P., “Equations differentielles abstraitesm”, Ann. Scient. Ec. Norm. Sup.(4), 2:3 (1969), 311–395 | MR | Zbl

[18] Grisvard P., “Equations operationnelles abstraites dans les espaces de Banach et problemes aux limites dans des ouverts cylindriques”, Annali S.N.S. Pisa, 21 (1967), 307–347 | MR | Zbl

[19] Kunstman P. C., Weis L., “Maximal L$_p$-regularity for Parabolic Equations, Fourier Multiplier Theorems and H$^{\infty}$-functional Calculus”, Lect. Notes in Math., 1855 (2004), 65–311 | DOI | MR | Zbl

[20] Prüss J., Simonett G., “Maximal regularity for evolution equations in weighted $L_p$-spaces”, Arch. Math., 82 (2004), 415–431 | MR

[21] Pyatkov S. G., Operator theory. Nonclassical problems, VSP, Utrecht–Boston–Köln–Tokyo, 2002, 348 pp. | MR | Zbl

[22] Shakhmurov V. B., “Maximal regular boundary value problems in Banach-valued function spaces and applications”, Int. J. of Math. Sci., 2006, no. 6, 26 | MR | Zbl

[23] Goldman N. A., “Svoistva reshenii parabolicheskikh uravnenii s neizvestnoi pravoi chastyu i sopryazhennye zadachi”, Dokl. RAN, 420:2 (2008), 151–156

[24] Fedorov V. E., Urazaeva A. V., “An inverse prolem for linear Sobolev type equations”, J. of Inverse and Ill-Posed Problems, 12:4 (2004), 387–395 | DOI | MR | Zbl