T-radicals generated by bimodules
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 88-93
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that for an arbitrary ring $S$ with identity and an arbitrary left module ${_S}F$ there exists an $S$-$S$-bimodule $N$ such that the conditions $A \otimes_S F = 0$ and $A \otimes_S N = 0$ are equivalent. It is shown that it suffices to set $N = F \otimes S$.
Mots-clés :
module, covariant extension, bimodule.
Keywords: radical, tensor product
Keywords: radical, tensor product
@article{VSGU_2009_8_a8,
author = {E. A. Timoshenko},
title = {T-radicals generated by bimodules},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {88--93},
publisher = {mathdoc},
number = {8},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2009_8_a8/}
}
E. A. Timoshenko. T-radicals generated by bimodules. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 88-93. http://geodesic.mathdoc.fr/item/VSGU_2009_8_a8/