Reznichenko's example is metalindelöf
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 61-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We note that a pseudocompact space $X$ that was constructed by E. A. Reznichenko is hereditarily metalindelöf. Moreover, every (hereditarily) metalindelöf space $Y$ can be attached to $X$ (the size of $X$ can vary to accommodate $Y$) so that the resulting space is a (hereditarily) metalindelöf pseudocompact space that contains $Y$ as a closed subset. This example is much simpler than related constructions of a pseudocompact not compact space with a point-countable base that are due to S. Watson and D. B. Shakhmatov or a metalindelöf pseudocompact not compact space that is due to Ian Tree.
Keywords: metalindelöf, pseudocompact, closed embedding.
@article{VSGU_2009_8_a5,
     author = {O. I. Pavlov},
     title = {Reznichenko's example is metalindel\"of},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {61--66},
     year = {2009},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_8_a5/}
}
TY  - JOUR
AU  - O. I. Pavlov
TI  - Reznichenko's example is metalindelöf
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 61
EP  - 66
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_8_a5/
LA  - ru
ID  - VSGU_2009_8_a5
ER  - 
%0 Journal Article
%A O. I. Pavlov
%T Reznichenko's example is metalindelöf
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 61-66
%N 8
%U http://geodesic.mathdoc.fr/item/VSGU_2009_8_a5/
%G ru
%F VSGU_2009_8_a5
O. I. Pavlov. Reznichenko's example is metalindelöf. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 61-66. http://geodesic.mathdoc.fr/item/VSGU_2009_8_a5/

[1] Burke D., “Covering properties”, Handbook of set-theoretic topology, North-Holland Publishing, Amsterdam, 1984, 347–422 | MR

[2] Watson S., “Pseudocompact metacompact spaces are compact”, Proc. Amer. Math. Soc., 81:1 (1981), 151–152 | MR | Zbl

[3] Watson S., “A pseudocompact meta-Lindelöf space which is not compact”, Topology and its Applications, 20:3 (1985), 237–243 | DOI | MR | Zbl

[4] van Douwen et al., “Star covering properties”, Topology and its Applications, 39:1 (1991), 71–103 | DOI | MR | Zbl

[5] Reznichenko E. A., “Psevdokompaktnoe prostranstvo v kotorom tolko mnozhestva polnoi moschnosti ne diskretny i zamknuty”, Vestnik MGU, Ser. I: Matem. Mekh., 44:6 (1989), 70–71 | MR | Zbl

[6] Scott B., “Pseudocompact, metacompact spaces are compact”, Topology Proceedings, 4:2 (1979), 577–587 | MR

[7] Tree I., “Constructing regular $2$-starcompact spaces that are not strongly $2$-star-Lindelöf”, Topology and its Applications, 47:2 (1992), 129–132 | DOI | MR | Zbl

[8] Uspenskii V. V., “Pseudocompact spaces with a point-finite base are metrizable”, Commenationes Math. Univ. Carolinae, 25:2 (1984), 261–264 | MR

[9] Shakhmatov D. B., “Psevdokompaktnye prostranstva s tochechno-schetnoi bazoi”, Dokl. Akad. nauk SSSR, 279:4 (1984), 825–829 | MR | Zbl

[10] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR