Mixed volume forms and complex equation of Monge–Ampere type on a torus
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 35-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article a generalization of a Calabi problem is considered. In the analytical treatment it leads to the complex Monge–Ampere equation on Kähler manifold containing the mixed discriminant of the given and retrieved metrics. For the case when Kähler manifold is a flat complex torus, sufficient conditions for solvability are obtained.
Mots-clés : Kähler manifold
Keywords: Monge–Ampere equation.
@article{VSGU_2009_8_a3,
     author = {V. N. Kokarev},
     title = {Mixed volume forms and complex equation of {Monge{\textendash}Ampere} type on a~torus},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {35--43},
     year = {2009},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_8_a3/}
}
TY  - JOUR
AU  - V. N. Kokarev
TI  - Mixed volume forms and complex equation of Monge–Ampere type on a torus
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 35
EP  - 43
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_8_a3/
LA  - ru
ID  - VSGU_2009_8_a3
ER  - 
%0 Journal Article
%A V. N. Kokarev
%T Mixed volume forms and complex equation of Monge–Ampere type on a torus
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 35-43
%N 8
%U http://geodesic.mathdoc.fr/item/VSGU_2009_8_a3/
%G ru
%F VSGU_2009_8_a3
V. N. Kokarev. Mixed volume forms and complex equation of Monge–Ampere type on a torus. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 35-43. http://geodesic.mathdoc.fr/item/VSGU_2009_8_a3/

[1] Besse A., Mnogoobraziya Einshteina, v 2 t., v. 1,2, Mir, M., 1990, 704 pp. | MR | Zbl

[2] Yau S. T., “On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampere equation, I”, Comm. Pure Appl. Math., 31 (1978), 339–411 | DOI | MR | Zbl

[3] Aleksandrov A. D., “Smeshannye diskriminanty i smeshannye ob'emy”, Matem. sb., 3:2 (1938), 227–251 | Zbl

[4] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966, 352 pp. | MR | Zbl

[5] Ivochkina N. M., “Reshenie zadachi Dirikhle dlya uravnenii krivizny poryadka $m$”, Matem. sb., 180:7 (1989), 867–887 | Zbl

[6] Pogorelov A. V., Mnogomernaya problema Minkovskogo, Nauka, M., 1975, 96 pp. | MR | Zbl

[7] Miranda K., Uravneniya v chastnykh proizvodnykh ellipticheskogo tipa, Inostr. lit., M., 1957, 256 pp.

[8] Kokarev V. N., “Kompleksnoe uravnenie tipa Monzha–Ampera na tore”, Geometriya v Odesse–2009, tez. dokl. mezhdunarodnoi konferentsii, Odessa, 2009, 50 pp.