On supports of characters of the unitriangular group
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 28-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a finite group and $\chi$ be its irreducible complex character. The set $\mathrm{Supp}(\chi)=\{g\in G\mid\chi(g)\neq0\}$ is called the support of $\chi$. Let $G=U$ be the unitriangular group (i.e., the group of unipotent triangular matrices) over a finite field of sufficiently large characteristic. In the paper we introduce the notion of $i$-regular character and describe the support of a $2$-regular character in terms of coefficients of minors of the characteristic matrix.
Keywords: the unitriangular group, the support of a character, $i$-regular characters.
@article{VSGU_2009_8_a2,
     author = {M. V. Ignatyev},
     title = {On supports of characters of the unitriangular group},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {28--34},
     year = {2009},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_8_a2/}
}
TY  - JOUR
AU  - M. V. Ignatyev
TI  - On supports of characters of the unitriangular group
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 28
EP  - 34
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_8_a2/
LA  - ru
ID  - VSGU_2009_8_a2
ER  - 
%0 Journal Article
%A M. V. Ignatyev
%T On supports of characters of the unitriangular group
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 28-34
%N 8
%U http://geodesic.mathdoc.fr/item/VSGU_2009_8_a2/
%G ru
%F VSGU_2009_8_a2
M. V. Ignatyev. On supports of characters of the unitriangular group. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 28-34. http://geodesic.mathdoc.fr/item/VSGU_2009_8_a2/

[1] Andre C. A. M., “The basic character table of the unitriangular group”, J. Algebra, 241 (2001), 437–471 | DOI | MR | Zbl

[2] Andre C. A. M., “Basic sums of coadjoint orbits of the unitriangular group”, J. Algebra, 176 (1995), 959–1000 | DOI | MR | Zbl

[3] Ignatev M. V., “Subregulyarnye kharaktery unitreugolnoi gruppy nad konechnym polem”, Fund. i prikl. matem., 13:5 (2007), 103–125 ; arXiv: math.RT/0603649v3 | MR

[4] Ignatev M. V., Panov A. N., “Koprisoedinennye orbity gruppy $\mathrm{UT}(7,K)$”, Fund. i prikl. matem., 13:5 (2007), 127–159 ; arXiv: math.RT/0603649 | MR

[5] Kazhdan D., “Proof of Springer's hypothesis”, Israel J. Math., 28 (1977), 272–286 | DOI | MR | Zbl

[6] Kirillov A. A., “Unitarnye predstavleniya nilpotentnykh grupp Li”, UMN, 17 (1962), 57–110 | MR | Zbl

[7] Kirillov A. A., Metod orbit i konechnye gruppy, MTsNMO, MK NMU, M., 1998

[8] Lehrer G. I., “Discrete series and the unipotent subgroup”, Compositio Math., 28:1 (1974), 9–19 | MR | Zbl

[9] Panov A. N., “Involyutsii v $S_n$ i assotsiirovannye koprisoedinennye orbity”, Zap. nauch. seminara POMI, 349, 2007, 150–173 ; arXiv: math.RT/0801.3022v1 | MR