The identification of the evolutional systems
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 109-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of determination of the parameter of the right hand side of the differential system or of the differential inclusion in accordance with the observations of the solution of the Cauchy problem in some times is considered. The parameter belongs to compact metric space. The uniqueness of the desired parameter is not assumed. The observations are produced with the errors. The final set is constructed, approximated by the unknown set of parameters in the Hausdorff metric. The approximation precision becomes zero with the errors of observation the errors of calculation.
Keywords: differential system, differential inclusion, compact metric space, determination of the parameter, errors of observation, errors of calculation.
@article{VSGU_2009_8_a10,
     author = {O. P. Filatov},
     title = {The identification of the evolutional systems},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {109--117},
     year = {2009},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_8_a10/}
}
TY  - JOUR
AU  - O. P. Filatov
TI  - The identification of the evolutional systems
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 109
EP  - 117
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_8_a10/
LA  - ru
ID  - VSGU_2009_8_a10
ER  - 
%0 Journal Article
%A O. P. Filatov
%T The identification of the evolutional systems
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 109-117
%N 8
%U http://geodesic.mathdoc.fr/item/VSGU_2009_8_a10/
%G ru
%F VSGU_2009_8_a10
O. P. Filatov. The identification of the evolutional systems. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 109-117. http://geodesic.mathdoc.fr/item/VSGU_2009_8_a10/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974, 224 pp. | MR

[2] Prasolov A. V., Matematicheskie metody ekonomicheskoi dinamiki, Lan, SPb., 2008, 352 pp.

[3] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999, 237 pp.

[4] Tikhonov A. N., “Ob ustoichivosti obratnykh zadach”, DAN SSSR, 39:5 (1943) | MR | Zbl