The problem with periodicity conditions for the equations of mixed type with characteristic degeneracy
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 15-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For mixed type equation $$ Lu\equiv u_{xx}+sgny\cdot |y|^m u_{yy}=0,\: 01\nonumber $$ \noindent in a rectangular domain $\{(x,y)|\quad 0$, where $m,\alpha,\beta$ – defined positive numbers, theorems of existence and uniqueness of the problem solvability with boundary solutions $u(0,y)=u(1,y)$, $u_x(0,y)=u_x(1,y)$, $-\alpha\leq y\leq \beta$; $u(x,\beta)=f(x)$, $u(x,-\alpha)=g(x),$ $0\le x\le 1$ are proved by the method of spectral analysis.
Keywords: eigenfunctions, spectral analysis.
@article{VSGU_2009_8_a1,
     author = {I. P. Egorova},
     title = {The problem with periodicity conditions for the equations of mixed type with characteristic degeneracy},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {15--27},
     year = {2009},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_8_a1/}
}
TY  - JOUR
AU  - I. P. Egorova
TI  - The problem with periodicity conditions for the equations of mixed type with characteristic degeneracy
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 15
EP  - 27
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_8_a1/
LA  - ru
ID  - VSGU_2009_8_a1
ER  - 
%0 Journal Article
%A I. P. Egorova
%T The problem with periodicity conditions for the equations of mixed type with characteristic degeneracy
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 15-27
%N 8
%U http://geodesic.mathdoc.fr/item/VSGU_2009_8_a1/
%G ru
%F VSGU_2009_8_a1
I. P. Egorova. The problem with periodicity conditions for the equations of mixed type with characteristic degeneracy. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 15-27. http://geodesic.mathdoc.fr/item/VSGU_2009_8_a1/

[1] Lerner M. E., Repin O. A., “O zadachakh tipa zadachi Franklya dlya nekotorykh ellipticheskikh uravnenii s vyrozhdeniem raznogo roda”, Differentsialnye uravneniya, 35:8 (1999), 1087–1093 | MR | Zbl

[2] Moiseev E. I., “O reshenii spektralnym metodom nelokalnoi kraevoi zadachi”, Differentsialnye uravneniya, 35:8 (1999), 1094–1100 | MR | Zbl

[3] Sabitov K. B., Sidorenko O. G., “Ob odnoznachnoi razreshimosti nelokalnoi zadachi dlya vyrozhdayuschegosya elliptichesokgo uravneniya spektralnym metodom”, Spektralnaya teoriya differentsialnykh operatorov i rodstvennye problemy, trudy mezhdunarodnoi konferentsii, posvyaschennoi yubileyu akademika V. A. Ilina, SF AN RB, v. 1, Gilem, Sterlitamak–Ufa, 2003, 213–219

[4] Sabitov K. B., Sidorenko O. G., “Suschestvenno nelokalnye zadachi dlya vyrozhdayuschegosya ellipticheskogo uravneniya”, Nelokalnye kraevye zadachi i problemy sovremennogo analiza i informatiki, materialy mezhdunarodnogo rossiisko-kazakhskogo simpoziuma, Elbrus, Nalchik, 2004, 156–160

[5] Sidorenko O. G., Nelokalnye zadachi dlya vyrozhdayuschikhsya uravnenii razlichnykh tipov, avtoref. dis. $\dots$ kand. fiz.-mat. nauk, SGPA, Sterlitamak, 2007, 18 pp.

[6] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Dokl. AN RAN, 413:1 (2007), 23–26 | MR | Zbl

[7] Sabitov K. B., Suleimanova A. Kh., “Zadacha Dirikhle vtorogo roda v pryamougolnoi oblasti”, Izvestiya vuzov. Matematika, 2007, no. 4, 45–53 | MR | Zbl

[8] Trikomi F., Differentsialnye uravneniya, Inostr. lit., M., 1962, 351 pp.

[9] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v polupolose”, Differentsialnye uravneniya, 43:10 (2007), 1417–1422 | MR | Zbl