The problem with periodicity conditions for the equations of mixed type with characteristic degeneracy
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 15-27

Voir la notice de l'article provenant de la source Math-Net.Ru

For mixed type equation $$ Lu\equiv u_{xx}+sgny\cdot |y|^m u_{yy}=0,\: 01\nonumber $$ \noindent in a rectangular domain $\{(x,y)|\quad 0$, where $m,\alpha,\beta$ – defined positive numbers, theorems of existence and uniqueness of the problem solvability with boundary solutions $u(0,y)=u(1,y)$, $u_x(0,y)=u_x(1,y)$, $-\alpha\leq y\leq \beta$; $u(x,\beta)=f(x)$, $u(x,-\alpha)=g(x),$ $0\le x\le 1$ are proved by the method of spectral analysis.
Keywords: eigenfunctions, spectral analysis.
@article{VSGU_2009_8_a1,
     author = {I. P. Egorova},
     title = {The problem with periodicity conditions for the equations of mixed type with characteristic degeneracy},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {15--27},
     publisher = {mathdoc},
     number = {8},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_8_a1/}
}
TY  - JOUR
AU  - I. P. Egorova
TI  - The problem with periodicity conditions for the equations of mixed type with characteristic degeneracy
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 15
EP  - 27
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_8_a1/
LA  - ru
ID  - VSGU_2009_8_a1
ER  - 
%0 Journal Article
%A I. P. Egorova
%T The problem with periodicity conditions for the equations of mixed type with characteristic degeneracy
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 15-27
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2009_8_a1/
%G ru
%F VSGU_2009_8_a1
I. P. Egorova. The problem with periodicity conditions for the equations of mixed type with characteristic degeneracy. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 8 (2009), pp. 15-27. http://geodesic.mathdoc.fr/item/VSGU_2009_8_a1/