Mathematical modelling of the contrast dissipative structures in the field of fluctuations of dynamical variables
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 74-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The influence of additive homogeneous isotropic field of Gauss fluctuations of dynamical variables of Gierer–Meinhardt model on the formation of dissipative structures in the soft mode of their excitation was investigated. The system of equations for the description of undamped modes interaction was received. It was shown that fluctuations of dynamic variables widen the instability region. The numerical modelling of evolution of the considered model with different boundary conditions was performed. It was shown that rising of random component of parameters of dynamical variables lead to acceleration of destruction of homogeneous stationary state and forming of dissipative structures far from Turing bifurcation and to its deceleration nearby this bifurcation. The estimation of times of transitions of the system was performed using the calculation norm of matrix of difference of concentration of reagents.
Mots-clés : dissipative structures
Keywords: undamped modes, field of fluctuations of dynamical variables, numerical modelling.
@article{VSGU_2009_6_a7,
     author = {L. I. Gromova and S. E. Kurushina and A. A. Ivanov},
     title = {Mathematical modelling of the contrast dissipative structures in the field of fluctuations of dynamical variables},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {74--84},
     year = {2009},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_6_a7/}
}
TY  - JOUR
AU  - L. I. Gromova
AU  - S. E. Kurushina
AU  - A. A. Ivanov
TI  - Mathematical modelling of the contrast dissipative structures in the field of fluctuations of dynamical variables
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 74
EP  - 84
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_6_a7/
LA  - ru
ID  - VSGU_2009_6_a7
ER  - 
%0 Journal Article
%A L. I. Gromova
%A S. E. Kurushina
%A A. A. Ivanov
%T Mathematical modelling of the contrast dissipative structures in the field of fluctuations of dynamical variables
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 74-84
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2009_6_a7/
%G ru
%F VSGU_2009_6_a7
L. I. Gromova; S. E. Kurushina; A. A. Ivanov. Mathematical modelling of the contrast dissipative structures in the field of fluctuations of dynamical variables. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 74-84. http://geodesic.mathdoc.fr/item/VSGU_2009_6_a7/

[1] Cohen D. S., White A. B., “Sharp fronts due to diffusion and viscoelastic relaxation in polymers”, SIAM J. Appl. Math., 51 (1991), 472–483 | DOI | MR | Zbl

[2] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskoe modelirovanie v biofizike (vvedenie v teoreticheskuyu biofiziku), IKI, M.–Izhevsk, 2004, 472 pp.

[3] Khaken G., Sinergetika, Mir, M., 1980, 406 pp. | MR

[4] Meinhardt H., Gierer A., “Generation and regeneration of sequences of structures during morphogenesis”, J. Theor. Biol., 85 (1980), 429 | DOI | MR

[5] Keener I. P., “Activaters and ingibitors in pattern formation”, Stuadies and Applied Mathematics, 59 (1978), 1 | MR | Zbl

[6] Gierer A., Meinhardt H., “Biological pattern formation involving lateral inhibition”, Lectures on Mathematics in the Life Sciences, 7 (1974), 163 | MR

[7] Meinhardt H., Gierer A., “Applications of a theory of biological pattern formation based on lateral inhibition”, Journ. Cell. Sci., 15 (1974), 321

[8] Belintsev B. N., Dinamicheskie kollektivnye svoistva razvivayuschikhsya sistem, dis. $\dots$ kand. fiz.-mat. nauk, MFTI, M., 1979

[9] Solyanik G. I., Chernavskii D. S., Matematicheskie modeli morfogeneza, Preprint FIAN, No 8, 1980

[10] Mikhailov A. S., Uporov I. V., “Kriticheskie yavleniya v sredakh s razmnozheniem, raspadom i diffuziei”, UFN, 144:1 (1984), 79–114 | DOI

[11] Klyatskin V. I., Stokhasticheskie uravneniya glazami fizika, Fizmatlit, M., 2001, 528 pp. | MR | Zbl

[12] Svirizhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978, 354 pp. | MR