The reduction of the second and third order differential equations which admit Lie algebra
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 69-73
Cet article a éte moissonné depuis la source Math-Net.Ru
In the published work, the reduction of differential equations which admit Lie algebra is presented. The differential equation of the second order which admits Lie algebra and reducted groups which are set by local point operator and exponential nonlocal operator are researched. In case of the differential equation of the third order which admits unsolvable Lie algebra, the reducted groups which are admitted by local points operators as well as non-local operators are viewed.
Keywords:
differential equation, differential equation of the second order, differential equation of the third order, Lie algebra, local operator, exponential nonlocal operator.
@article{VSGU_2009_6_a6,
author = {Yu. O. Yakovleva},
title = {The reduction of the second and third order differential equations which admit {Lie} algebra},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {69--73},
year = {2009},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2009_6_a6/}
}
TY - JOUR AU - Yu. O. Yakovleva TI - The reduction of the second and third order differential equations which admit Lie algebra JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2009 SP - 69 EP - 73 IS - 6 UR - http://geodesic.mathdoc.fr/item/VSGU_2009_6_a6/ LA - ru ID - VSGU_2009_6_a6 ER -
Yu. O. Yakovleva. The reduction of the second and third order differential equations which admit Lie algebra. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 69-73. http://geodesic.mathdoc.fr/item/VSGU_2009_6_a6/
[1] Zaitsev V. F., “Formalnye operatory i teoremy o faktorizatsii obyknovennykh differentsialnykh uravnenii”, Simmetrii i differentsialnye uravneniya, trudy Mezhdunarodnoi konferentsii, Krasnoyarsk, 2002, 101–105
[2] Zaitsev V. F., “Trekhmernaya nerazreshimaya algebra Li, dopuskaemaya differentsialnym uravneniem tretego poryadka i ee podalgebry”, Gertsenovskie chteniya –2008, materialy nauchnoi konferentsii, SPb., 2008, 56–58 | Zbl
[3] Ibragimov N. Kh., Opyt gruppovogo analiza, Znanie, M., 1991, 48 pp. | MR | Zbl
[4] Olver P., Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 640 pp. | MR | Zbl