Birational invariants for the torus without affect in a~group of $F_4$ type
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 57-68

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper all the cohomological birational invariants for the torus without affect in a semisimple exceptional group of $F_4$ type are calculated. Kunyavski B. and Cortella A. have proved that this torus is not rational. We prove that the Picard group of a projective model for the studied torus is not cohomologically trivial. We find all the subgroups in Weyl group $W(F_4)$ for which the corresponding cohomological invariant is not trivial.
Mots-clés : algebraic torus, birational invariant
Keywords: cohomology, flasque resolution, semisimple group.
@article{VSGU_2009_6_a5,
     author = {Yu. Yu. Krutikov},
     title = {Birational invariants for the torus without affect in a~group of $F_4$ type},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {57--68},
     publisher = {mathdoc},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_6_a5/}
}
TY  - JOUR
AU  - Yu. Yu. Krutikov
TI  - Birational invariants for the torus without affect in a~group of $F_4$ type
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 57
EP  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_6_a5/
LA  - ru
ID  - VSGU_2009_6_a5
ER  - 
%0 Journal Article
%A Yu. Yu. Krutikov
%T Birational invariants for the torus without affect in a~group of $F_4$ type
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 57-68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2009_6_a5/
%G ru
%F VSGU_2009_6_a5
Yu. Yu. Krutikov. Birational invariants for the torus without affect in a~group of $F_4$ type. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2009), pp. 57-68. http://geodesic.mathdoc.fr/item/VSGU_2009_6_a5/