Derivation of the differential equations of movement of complex elastic system
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2009), pp. 85-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of the article is to receive a mathematical model of movement of the complex elastic system. The normal modes and frequencies are searched by the decomposition of vibrations on the modes of stationary elements of the system. It allows to transform partial differential equations of movement in ordinary differential equations. The movement of a space craft which consists of elastic large size elements (solar panels) is modeled.
Keywords: complex elastic system, normal frequencies of vibrations, differential equations of movement, elastic space craft, solar panels, Reyleigh–Ritz method, principle of Hamilton–Ostrogradskii.
Mots-clés : normal modes of vibration
@article{VSGU_2009_4_a5,
     author = {A. A. Avramenko and B. V. Borisov},
     title = {Derivation of the differential equations of movement of complex elastic system},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {85--100},
     year = {2009},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_4_a5/}
}
TY  - JOUR
AU  - A. A. Avramenko
AU  - B. V. Borisov
TI  - Derivation of the differential equations of movement of complex elastic system
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 85
EP  - 100
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_4_a5/
LA  - ru
ID  - VSGU_2009_4_a5
ER  - 
%0 Journal Article
%A A. A. Avramenko
%A B. V. Borisov
%T Derivation of the differential equations of movement of complex elastic system
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 85-100
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2009_4_a5/
%G ru
%F VSGU_2009_4_a5
A. A. Avramenko; B. V. Borisov. Derivation of the differential equations of movement of complex elastic system. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2009), pp. 85-100. http://geodesic.mathdoc.fr/item/VSGU_2009_4_a5/

[1] Khoroshilov V. S., “Mekhanicheskie modeli dvizheniya kosmicheskogo apparata s solnechnoi batareei”, Izvestiya AN SSSR. MTT, 1978, no. 5, 18–24

[2] Dokuchaev L. V., Klimov O. P., “Ob ustoichivosti vrascheniya tverdogo tela s gibkimi elementami”, Izvestiya AN SSSR. MTT, 1982, no. 5, 10–15

[3] Nabiullin M. K., Statsionarnoe dvizhenie i ustoichivost uprugikh sputnikov, Nauka. Sibirskoe otdelenie, Novosibirsk, 1990, 216 pp. | MR | Zbl

[4] Mirovich L., Kvinn R. D., “Uravnenie dvizheniya manevriruyuschego kosmicheskogo apparata nezhestkoi konstruktsii”, Aerokosmicheskaya tekhnika, 1988, no. 6, 82–96

[5] Ganiev R. F., Kovalchuk P. S., Dinamika sistem tverdykh i uprugikh tel. Rezonansnye yavleniya pri nelineinykh kolebaniyakh, Mashinostroenie, M., 1980, 208 pp.

[6] Borisov M. V., “Primenenie metoda Releya–Rittsa dlya nakhozhdeniya sobstvennykh chastot i form kolebanii slozhnoi uprugoi sistemy”, Studencheskaya nauka aerokosmicheskomu kompleksu: sbornik trudov studentov i aspirantov fakulteta letatelnykh apparatov, Vyp. 7, SGAU, Samara, 2001, 10–16

[7] Lantsosh K., Variatsionnye printsipy mekhaniki, Mir, M., 1965, 408 pp.

[8] Timoshenko S. P., Yang D. Kh., Uiver U., Kolebaniya v inzhenernom dele, Mashinostroenie, M., 1985, 472 pp.

[9] Bukhgolts N. N., Osnovnoi kurs teoreticheskoi mekhaniki, Nauka, M., 1966

[10] Belyaev M. Yu., Zavalishin D. A., Sazonov V. V., Opredelenie kharakternykh chastot uprugikh kolebanii konstruktsii mezhdunarodnoi kosmicheskoi stantsii, Preprint Instituta prikladnoi matematiki im. M. V. Keldysha RAN, No 86, M., 2008, 32 pp.

[11] Shabana A. A., Dynamics of Multibody Systems, Cambridge University Press, Cambridge–New York–Melbourne–Madrid–Cape Town –Singapore, 2005 | MR | Zbl

[12] Sänger N., Betch P., “On the Use of Geometrically Exact Shells in a Conserving Framework for Flexible Multibody”, Proceedings of the 4th Asian Conference on Maltibody Dynamics 2008 (Seogwipo KAL Hotel, Jeju, Korea, 2008), The Korean Sosiety of Mechanical Engineers, Seoul, 2008, 399–408