About asymptotics and large deviations in the central limit theorem for sums $\sum \mathbf{f(q^nt)}$
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2009), pp. 52-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper new estimates for the remainder term and large deviations in the central limit theorem for sums $\sum \mathbf{f(q^nt)}$ are obtained. Technique and methods of reasoning contained not only in the classical probability theory, but also in the theory of diophantine equations with exponential function are used in the given proofs.
Keywords: central limit theorem, exponential function, asymptotics and large deviations.
Mots-clés : diophantine equation
@article{VSGU_2009_4_a4,
     author = {L. P. Usol'tsev},
     title = {About asymptotics and large deviations in the central limit theorem for sums $\sum \mathbf{f(q^nt)}$},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {52--84},
     year = {2009},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_4_a4/}
}
TY  - JOUR
AU  - L. P. Usol'tsev
TI  - About asymptotics and large deviations in the central limit theorem for sums $\sum \mathbf{f(q^nt)}$
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 52
EP  - 84
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_4_a4/
LA  - ru
ID  - VSGU_2009_4_a4
ER  - 
%0 Journal Article
%A L. P. Usol'tsev
%T About asymptotics and large deviations in the central limit theorem for sums $\sum \mathbf{f(q^nt)}$
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 52-84
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2009_4_a4/
%G ru
%F VSGU_2009_4_a4
L. P. Usol'tsev. About asymptotics and large deviations in the central limit theorem for sums $\sum \mathbf{f(q^nt)}$. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2009), pp. 52-84. http://geodesic.mathdoc.fr/item/VSGU_2009_4_a4/

[1] Postnikov A. G., Ergodicheskie voprosy teorii sravnenii i teorii diofantovykh priblizhenii, Trudy Matem. in-ta im. V. A. Steklova, 82, Nauka, M., 1966 | MR | Zbl

[2] Usoltsev L. P., “K zakonu povtornogo logarifma v zadache o raspredelenii drobnykh dolei pokazatelnoi funktsii”, Trudy Kuibyshev. aviats. in-ta. Ser.: Matematika, 1975, no. 1, 24–28

[3] Ibragimov I. A., “Tsentralnaya predelnaya teorema dlya summ funktsii ot nezavisimykh velichin i summ vida $\,\sum f(2^{k}t)$”, Teoriya veroyatn. i ee primenen., 12:4 (1967), 655–665 | Zbl

[4] Mineev M. P., “Diofantovo uravnenie s pokazatelnoi funktsiei i ego prilozhenie k izucheniyu ergodicheskoi summy”, Izv. AN SSSR. Ser.: Matematika, 26:5 (1958), 282–298

[5] Mukhutdinov R. Kh., “Diofantovo uravnenie s matrichnoi pokazatelnoi funktsiei”, Dokl. AN SSSR, 142:1 (1962), 36–38

[6] Usoltsev L. P., “Neuluchshaemaya otsenka skorosti skhodimosti k normalnomu zakonu i asimptotika bolshikh uklonenii v odnom chastnom sluchae teoremy Forte–Katsa”, Issledovaniya po additivnoi teorii chisel, nauch. trudy, 215, KGPI, Kuibyshev, 1978, 45–76 | MR

[7] Usoltsev L. P., “Tsentralnaya predelnaya teorema i bolshie ukloneniya dlya odnoi summy s pokazatelnoi funktsiei”, Markovskie sluchainye protsessy i ikh primenenie, mezhvuz. sb. nauchn. tr., SGU, Saratov, 1980, 105–114

[8] Usoltsev L. P., “O bolshikh ukloneniyakh dlya klassicheskikh raspredelenii, porozhdaemykh drobnymi dolyami pokazatelnoi funktsii s tselym osnovaniem”, Vestnik Samarskogo tekhn. un-ta. Ser.: Fiziko-matematicheskie nauki, 2004, no. 30, 99–107

[9] Usoltsev L. P., “Ob asimptotike i bolshikh ukloneniyakh v teoreme Forte–Katsa”, Obozrenie prikl. i promyshl. matem., 15:1 (2008), 97–98

[10] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, M.–L., 1949

[11] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR

[12] Statuleviĉius V. A., “On large deviations”, Zeitschrift für Wahrsch., 6:2 (1966), 133–144 | DOI | Zbl

[13] Prokhorov Yu. V., Rozanov Yu. A., Teoriya veroyatnostei (osnovnye ponyatiya. Predelnye teoremy. Sluchainye protsessy), Nauka, M., 1973 | MR