Gakhov equation for external mixed inverse boundary value problem on Riemann surfaces with branch-point of arbitrary order over the infinity
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2009), pp. 30-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the solvability of an analog of the Gakhov equation for an external mixed inverse boundary value problem on a polygonal Riemann surface with a unique branch-point over the infinity.
Keywords: mixed inverse boundary value problem, Gakhov's equation, rotation of vector field, Riemann surface, boundary value problems with free boundaries, polyanalytical functions.
@article{VSGU_2009_4_a2,
     author = {S. R. Nasyrov and L. Yu. Nizamieva},
     title = {Gakhov equation for external mixed inverse boundary value problem on {Riemann} surfaces with branch-point of arbitrary order over the infinity},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {30--43},
     year = {2009},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_4_a2/}
}
TY  - JOUR
AU  - S. R. Nasyrov
AU  - L. Yu. Nizamieva
TI  - Gakhov equation for external mixed inverse boundary value problem on Riemann surfaces with branch-point of arbitrary order over the infinity
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 30
EP  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_4_a2/
LA  - ru
ID  - VSGU_2009_4_a2
ER  - 
%0 Journal Article
%A S. R. Nasyrov
%A L. Yu. Nizamieva
%T Gakhov equation for external mixed inverse boundary value problem on Riemann surfaces with branch-point of arbitrary order over the infinity
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 30-43
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2009_4_a2/
%G ru
%F VSGU_2009_4_a2
S. R. Nasyrov; L. Yu. Nizamieva. Gakhov equation for external mixed inverse boundary value problem on Riemann surfaces with branch-point of arbitrary order over the infinity. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 4 (2009), pp. 30-43. http://geodesic.mathdoc.fr/item/VSGU_2009_4_a2/

[1] Nasyrov S. R., Galiullina G. R., “Uravnenie Gakhova dlya vneshnei smeshannoi obratnoi kraevoi zadachi po parametru $x$”, Izv. vuzov. Matematika, 2002, no. 10, 25–30

[2] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977, 424 pp. | MR

[3] Krasnoselskii M. A., Perov A. I., Povolotskii A. I., Vektornye polya na ploskosti, Fizmatgiz, M., 1963, 248 pp. | MR

[4] Nasyrov S. R., O metode poligonalnoi approksimatsii v smeshannykh obratnykh kraevykh zadachakh po parametru $x$, Dep. v VINITI 17.05.82, No 2459–82, Izd-vo Kazan. un-ta, Kazan, 1982, 48 pp., Bibl.: 19 nazv.

[5] Nasyrov S. R., “Smeshannaya obratnaya kraevaya zadacha na rimanovykh poverkhnostyakh”, Izv. vuzov. Matematika, 1990, no. 10, 25–36 | MR | Zbl

[6] Nasyrov S. R., Faizov I. Z., “Lokalnaya edinstvennost resheniya smeshannoi obratnoi kraevoi zadachi na poligonalnykh rimanovykh poverkhnostyakh s prostymi tochkami vetvleniya”, Uch. zap. Kazan. gos. un-ta. Ser.: Fiz.-mat., 148, Kn. 2 (2006), 97–108 | Zbl

[7] Nasyrov S. R., Nizamieva L. Yu., “Uravnenie Gakhova dlya vneshnei smeshannoi obratnoi kraevoi zadachi po parametru $x$ na poligonalnoi rimanovoi poverkhnosti s prostoi tochkoi vetvleniya na beskonechnosti”, Uch. zap. Kazan. gos. un-ta. Ser.: Fiz.-mat., 150, Kn. 1 (2008) | Zbl

[8] Nasyrov S. R., “Generalized Riemann–Hurwitz Formula”, Rev. Romain Acad. Sci., 40:2 (1995), 177–194 | MR | Zbl

[9] Polia G., Sege G., Zadachi i teoremy iz analiza, v. 1, GITTL, M., 1956, 396 pp.