The criteria of completeness for redefining boolean function
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2009), pp. 60-79
Cet article a éte moissonné depuis la source Math-Net.Ru
Boolean functions, determined not to all sets are considered in this work. At the same time vagueness is appreciated as decision-making in the model with three possible answers: “for”, “against” and “indifferently or not determined” and decision “for” is taken in the situation “absence of against”. Appropriate definition of superposition, closed classes is introduced and the criteria of completeness is proved.
Keywords:
boolean functions, partial boolean functions, closed classes, clone, hyperclone.
Mots-clés : maximal classes
Mots-clés : maximal classes
@article{VSGU_2009_2_a5,
author = {V. I. Panteleev},
title = {The criteria of completeness for redefining boolean function},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {60--79},
year = {2009},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2009_2_a5/}
}
V. I. Panteleev. The criteria of completeness for redefining boolean function. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2009), pp. 60-79. http://geodesic.mathdoc.fr/item/VSGU_2009_2_a5/
[1] Freivald R. V., “O polnote chastichnykh funktsii algebry logiki”, DAN SSSR, 167:6 (1966), 1249–1250 | MR
[2] Tarasov V. V., “Kriterii polnoty dlya ne vsyudu opredelennykh funktsii algebry logiki”, Problemy kibernetiki, vyp. 30, Nauka, M., 1975, 319–325 | MR
[3] Lozhkin S. A., “O sinteze formul i skhem iz ne vsyudu opredelennykh funktsionalnykh elementov”, Diskretnye modeli v teorii upravlyayuschikh sistem, trudy Mezhdunarodnoi konferentsii, Izd-vo VMiK MGU, M., 2004, 44–47
[4] Marchenkov S. S., Zamknutye klassy bulevykh funktsii, FIZMATLIT, M., 2000, 128 pp. | MR | Zbl